
Journal of Computer Science, 9 (4): 463-476, 2013
ISSN 1549-3636
© 2013 Science Publications
doi:10.3844/jcssp.2013.463.476 Published Online 9 (4) 2013 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Noocharin Tippayawannakorn, Department of Industrial Engineering, Faculty of Engineering.
 Kasetsart University, Bangkok, 10900, Thailand

463 Science Publications

JCS

NELDER-MEAD METHOD WITH LOCAL
SELECTION USING NEIGHBORHOOD AND

MEMORY FOR STOCHASTIC OPTIMIZATION

Noocharin Tippayawannakorn and Juta Pichitlamken

Department of Industrial Engineering, Faculty of Engineering,
Kasetsart University, Bangkok, 10900, Thailand

Received 2013-01-18, Revised 2013-05-04; Accepted 2013-05-10

ABSTRACT

We consider the Nelder-Mead (NM) simplex algorithm for optimization of discrete-event stochastic
simulation models. We propose new modifications of NM to reduce computational time and to
improve quality of the estimated optimal solutions. Our means include utilizing past information of
already seen solutions, expanding search space to their neighborhood and using adaptive sample sizes.
We compare performance of these extensions on six test functions with 3 levels of random variations.
We find that using past information leads to reduction of computational efforts by up to 20%. The
adaptive modifications need more resources than the non-adaptive counterparts for up to 70% but give
better-quality solutions. We recommend the adaptive algorithms with using memory with or without
neighborhood structure.

Keywords: Nelder-Mead Simplex, Adaptive Nelder-Mead Simplex, Continuous Stochastic Optimization,

Neighborhood Search, Local Selection

1. INTRODUCTION

An Optimization via Simulation (OvS) is the problem
of finding possible set of input variables or decision
variables that give maximum or minimum objective
function values. In addition, a simulation optimization
also aims at minimizing computational resources spent
while maximizing the information obtained in a
simulation experiment (Carson and Maria, 1997). We are
interested in the OvS problems that have stochastic
objective functions and continuous decision variables
(Alon et al., 2005; Henderson and Nelson, 2006; Olafsson
and Kim, 2002; Swisher et al., 2004) for OvS surveys.

Many OvS tools are developed for unconstrained
continuous problems. Most of them are based on the
random search method that takes objective function
values from a set of sample points and uses that
information to select the next points. Various techniques
differ in the choice of sampling strategies (Andradottir,
2006). A point-based strategy involves sampling points

in a neighborhood of the current solution, e.g., the
Stochastic Ruler (Alrefaei and Andradottir, 2005) and
the Simulated Annealing (Press et al., 2007). A set-based
strategy generates a set of candidate solutions from a
subset of the feasible region, e.g., the Nested Partitions
Method (Shi and Olafsson, 2009) and the Nelder-Mead
Simplex (Nelder and Mead, 1965). A population-based
strategy creates a collection of candidate solutions using
some properties of the previously visited solutions; for
example, the Genetic Algorithm (Holland, 2000) and the
Evolutionary Strategies (Beyer and Schwefel, 2002).

We focus on the Nelder-Mead (NM) simplex algorithm
(Nelder and Mead, 1965), which is originally developed for
unconstrained deterministic optimization. It demonstrates
wide versatility and ease of use such that it is implemented
in MATLAB as a function fminsearch. The NM is also
robust with respect to small random variations in the
observed objective function values; therefore, it is used for
optimizing stochastic problems as well (Tomick, 1995;
Humphrey and Wilson, 2000) However, in the case that

Noocharin Tippayawannakorn and Juta Pichitlamken / Journal of Computer Science 9 (4): 463-476, 2013

464 Science Publications

JCS

variability in the objective function values are sufficiently
large, the NM may terminate before reaching the global
optima. For this, Barton and Ivey (1996) propose the
algorithm RS9 that improve NM performance for stochastic
problems by increasing the shrink parameter and
recalculating every point of shrink simplex.

In this study, we propose variants of the NM by
utilizing past information and/or proximate points.
Specifically, we incorporate:

• Information collected since the search begins and
• Search neighborhood

With numerical experiments, we show that our
algorithms provide better solutions while requiring less
computational efforts than the original NM.

Generally, an OvS problem can be defined as
follows: The objective is to determine an optimal

solution, x*, that minimizes the unknown objective
function, µ: Θ→ℝ over a continuous feasible region,
Θ∈ℝ d; that is, *

x Θ

x argmin (x),
∈

= µ where, x∈Θ is a vector
of d decision variables and x is called a solution. The
objective function µ(x) cannot be observed directly; thus,
it is estimated with stochastic simulation, i.e. Equation 1:

xx
(x) E G(x,)ξµ = ξ (1)

where, G (x,ξx) is a simulation output evaluated at x and

xξ is an unbiased random element with xE[]ξ = 0 and
2

x xV[]ξ = σ . The estimate of µ(x), ˆ (x)µ , is a sample mean

of m independent simulation outputs:

m

i
i 1

1ˆ (x) G(x) G(x,)
m =

µ = = ξ∑ (2)

This study is organized as follows: Section 2

introduces the original form of the NM simplex algorithm,
its existing variants, our extensions and describes design
of numerical experimens. Section 3 shows of numerical
results. Section 4 discusses the results. Ultimately, we
conclude in section 5.

2. MATERIALS AND METHODS

2.1. The Nelder-Mead Simplex Algorithm

2.1.1. Original NM

The first of the simplex methods is due to
Spendley et al. (1962) for deterministic problems. They
assume that any point in the domain of search can be
constructed by taking a linear combination of the edges

adjacent to any given vertices. The original simplex consists
of the reflection of one vertex through the centroid of the
opposite face. Sometimes a sequence of reflections brings
the search back to where it starts. Nelder and Mead (1965)
add expansion and contraction moves to accelerate the
search and a shrink step is introduced to decrease the
lengths of edges adjacent to the current best vertex by half,
in case that none of the steps brings acceptable
improvement to the original simplex. Figure 1 illustrates
2-dimensional trial points for a simplex consisting of x0, x1
and x2. The solid lines simplex is initialized. Other line-
style simplexes show various simplex operations, e.g., an
expansion point is E

2x , a reflection point is R
2x , internal

and external contraction points are iC
2x and eC

2x ,

respectively and C is the centroid of the 2 best points. By
the default setting of fminsearch (the NM implementation
in MATLAB), a single simulation output (m = 1 in
Equation 2) is an estimate of an objective function ˆ (x)µ .

The overall logical steps of the NM algorithm are
shown in Fig. 2 and it can be explained in more details as
follows.

2.2. Initialization: Create an Initial Simplex

• Select a starting point x0∈Θ, a vector of d
dimensions

• Form an initial simplex of d+1 points, by defining:

i 1 2 i i dx [x ,x , , x s , , x], i 1,2, ,d,= + =… … … (3)

where, si are the user-specified initial step sizes.
• Estimate the objective function values at each of the

d+1 simplex points from m independent simulation
outputs by computing its sample averages via
Equation 2 to get

0 1 d
ˆ ˆ ˆ(x), (x), , (x)µ µ µ… then initialize

the iteration number j = 1 and a number of observation
of simulation outputs, count = m(d+1)

Fig. 1. All simplex operations of the Nelder-Mead simplex

Noocharin Tippayawannakorn and Juta Pichitlamken / Journal of Computer Science 9 (4): 463-476, 2013

465 Science Publications

JCS

Fig. 2. Flow chart for the jth iteration of the Nelder-Mead simplex algorithm

• Re-order these points in a non-decreasing order so
that 0 1 d

ˆ ˆ ˆ(x) (x) (x)µ ≤ µ ≤ ≤ µ…

 While i 0 x

i 1,2,...,d
ˆ ˆmax x x

=
− ≤ ε and

ˆi 0
i 1,2,...,d

ˆ ˆ ˆ ˆmax (x) (x) µ=
µ − µ ≤ ε , j<Nsearch and ˆcount Nµ< are

true.

Step 1: Calculate the Reflection Point

A worst point on the simplex (recall that we
consider a minimization problem, so the worst point is
one with the highest sample mean xd) xd is replaced
with another point which has a lower objective
function. Let R

dx be the reflection of the worst point

and xd passes through the centroid C of the d-best
points. These points are computed

as
d 1

j
j 0

1
C x

d

−

=

= ∑ and
R
d dx C (C x)= +α − where, α <0 is a

reflection parameter; typically 1. Then the objective

function value R
d

ˆ (x)µ is estimated via m simulation

outputs then count = count+m.

Step 2: Update the Simplex
Figure 3 shows an initial simplex with dash lines and

an updated simplex with solid lines. The updated
simplex depends on the relationship between Rdˆ (x)µ and

0 1
ˆ ˆ(x), (x), ,µ µ … d

ˆ (x)µ ; that is:

• If R
0 d d 1

ˆ ˆ ˆ(x) (x) (x)−µ ≤ µ < µ , set R
d dx x← and d

ˆ (x)µ ←
R
d

ˆ (x)µ as shown in Fig. 3a. Then go to Step 4.

• If R
d 0

ˆ ˆ(x) (x)µ < µ , the search continues in the same

direction by calculating the expansion point,E
dx C= +

R
d(x C)γ − where γ>0 is an expansion parameter,

typically 2. Then ()E
d

ˆ xµ is estimated from m

simulation outputs by Equation 2, then count = count
+ m. The expansion point is accepted when it
improves over the best point in the simplex, x0, as
shown in Fig. 3b; otherwise, the reflection point is
accepted. Go to Step 4.

Noocharin Tippayawannakorn and Juta Pichitlamken / Journal of Computer Science 9 (4): 463-476, 2013

466 Science Publications

JCS

(a) (b)

(c) (d)

Fig. 3. Operations of the NM simplex method

If R

d 1 d
ˆ ˆ(x) (x)−µ ≤ µ , the search reduces the simplex size by

calculating the contraction point, C
d dx C (x C),= + β −ɶ

where, β>0 is a contract parameter (generally 0.5) and

dxɶ is R
dx if R

d d
ˆ ˆ(x) (x)µ < µ and xd otherwise. The objective

function C
d

ˆ (x)µ is estimated then count = count+m. If
C
d d

ˆ ˆ(x) (x)µ ≥ µ , go to Step 3; otherwise, the contraction point

is accepted, i.e.,
C

d dx x← . The updated simplex can be

one of two solid-line simplexes in Fig. 3c depending on

which as the optimal
*x̂ and *ˆ ˆ(x),µ respectively, when

when the search terminates. Contraction point (ic
2x or

ec
2x) is used. Go to Step 4.

Step 3: Shrink the Simplex

 If the reflection point and contraction point provide
no improvement, then the simplex is shrunk toward the
best point x0 as shown in Fig. 3d. Compute the new
simplex as follows:

0 1 0 2 0 d 0[x , x (1)x , x (1)x , , x (1)x]τ + − τ τ + − τ τ + − τ… (4)

where, τ is a shrink parameter, typically 0.5. The objec-
tive function values of these new points are estimated
count = count +md. Then go to Step 4.

Step 4: Re-order the Simplex Points in
Ascending Orders

 Then let j = j+1.

End while
Return *x̂ and *ˆ ˆ(x)µ .

2.3. Barton and Ivey Stochastic Modification of
NM and its Variant (RS9 and ANRS9)

Barton and Ivey (1996) adapt the NM algorithm to
accommodate stochastic variations in the objective function
values. From empirical results, they see that because the
NM algorithm relies on the ranks of the objective function
values at the simplex vertices, it can make progress in
presence of relatively small randomness which does not
change the rank of the function value at the simplex points.
However, if the variations in the function value are large
enough, it affects the relative rank of the simplex vertices
and misleads the algorithm.

Barton and Ivey (1996) recommend the shrinkage
coefficient (in Equation 4) of 0.9 instead of the usual 0.5 to
increase the extent of reduction after shrink. This change
improves the performance effectively for the cases where
the original NM fails. Resampling the best point after shrink
reduces the frequency of contraction, but this strategy is not
effective in improving algorithm performance.

Noocharin Tippayawannakorn and Juta Pichitlamken / Journal of Computer Science 9 (4): 463-476, 2013

467 Science Publications

JCS

Moreover, Barton and Ivey (1996) apply another
stopping criterion for stochastic problems, as suggested
by Dennis and Woods (1987). The search terminates
when the simplex size is sufficiently small:

d

i 0
i 1

x
0

x x

max(1, x)
=

−
≤ ε

∑
 (5)

where, 0 1 d

ˆ ˆ ˆ(x) (x) (x),µ < µ < < µ… and i is the Euclidean

norm, i.e., 2 2 2
1 2 dx x x x= + + +⋯ . Besides the stopping

criteria in Equation 5, their so-called RS9 is the NM with
the following modifications: The objective function is
estimated with 6 independent simulation outputs (m = 6
in Equation 2); every solution is resampled every time it
is encountered (no search history is kept); and the
shrinkage coefficient τ is 0.9.

The rescaling operations of the NM algorithm can
lead to a too-early termination at a non-optimum if noise is
present. Tomick et al. (1995) modify the RS9 further to
allow the sample sizes to adjust adaptively to the observed
noise in the solution space, called ANRS. Suppose that mj
is the minimum number of observations taken at each new
trial point during the jth iteration and m0 = 6:

j 2 2 2
j 1

j

d,bm if S / (d)
m

m otherwise

+ α
 σ ≤ χ =

 (6)

where, b = 1.25 is a factor to increase the sample size, d
is a size of the decision variable x, x is the largest
integer smaller than x:

2 2

ik ik

j j
2

j jd 1 m d 1 m

i 1 k 1 i 1 k 1

ˆ ˆ(x) (x)

m (d 1)m
S

d

+ +

= = = =

µ µ

 −
+=

∑ ∑ ∑∑

is the mean square treatments from Analysis of Variance
(ANOVA), σ2 is the variance of white noise, ξx in
Equation 1 and 2

d,αχ is an α upper percentile of the chi-

square distribution with d degree of freedom.

2.4. New Variants of the Nelder-Mead Simplex
Algorithm

We are motivated by several general-purpose
optimization algorithms for deterministic problems that
are based on a neighborhood search; for example, the
very large scale neighborhood search (Pichitlamken and
Nelson, 2003), neighborhood search based on tabu search

and complete local search with memory for solving
the uncapacitated facility location problem
(Pichitlamken et al., 2006). At each iteration, the
search iteratively moves from the current solution to
one of its neighbors which is better than itself and any
other solutions in the neighbor-hood. Neighborhood
search strategy and statistical selection of the best are
used in OvS in Tomick et al. (1995) followed by a
framework for OvS in More et al. (1981).

First, we define an “already-visited solution” as x that
is not “too far” from the one already seen v, v x

∞
− =

i i v
1 i d
max v x e ,

≤ ≤
− = where, ||.||∞ is the uniform norm, x

∞
=

}{ 1 2 dmax x , x , , x ,… and the neighbor distance 0≤e≤εx
where εx =10-4, similar to the terminating criterion of the

fminsearch. We select the neighbor v which provides the
minimum ev as distinguishable from x. For an example
of 2-dimensional problem, suppose x =
(1.00018,2.50101), v1 = (1.00018, 2.50110) and v2 =
(1.0011,2.50101), v3 = (1.00015, 2.601010) then e1 =
max {|1.00018-1.0018|,|2.50101-2.50110}= 9×10-5, e2 =
max (|1.0018-1.0011|,|2.50101|) = 7×10-5, e3 = max(|1.0018-
1.00015|,|2.50101-2.60101) = 0.1. Since e3 is greater
than εx, v3 does not belong to N(x) and we select v2 to
represent x because e2≤εx and it has the smallest uniform-
norm distance from x.

We define the neighborhood of solution x =
[x1,x2,…,xd] as N(x) consisting of all already-seen solu-
tions which lie inside the region of:

1 2 d 1 2 d 1 2 d

1 2 d 1 2 d

[x ,x , , x],[x ,x , , x],[x ,x , , x],

[x ,x , ,x], ,[x ,x , , x]

− ε + ε − ε
+ ε + ε
… … …

… … …
 (7)

where, ε is the user-specified maximum neighborhood
distance. We exclude any neighbors that lie outside the
feasible space Θ, or ones which are further than ε from
any given x.

The aim of using past information is to save
simulation effort by avoiding sampling at every
encounter. In our implementation of the NM search, we
compare the sample averages of all candidates and select
the one with the smallest average as the winner.

We propose two NM-based algorithms with memory
as follows.

2.5. The Nelder-Mead Selection with Memory
(NMSM)

Simulation outputs that have been obtained for
revisited solutions and their candidate solutions are kept
in a database and they replace new sampling. Nevertheless,
for already-seen solutions, NMSM adds one simulation
output every time it is encountered so as to protect the
search from unusually good or bad history.

Noocharin Tippayawannakorn and Juta Pichitlamken / Journal of Computer Science 9 (4): 463-476, 2013

468 Science Publications

JCS

Fig. 4. NMSMN algorithm

Let Vj be a collection of visited solutions during the
j th iteration where V0 = φ. If x∉V j then Vj = V j-1∪x. The
NM is changed as follows: before generating new
simulation outputs G(x,ξi) for x∈{x 0,x1,x2,…,xd, x

R, xE,
xC},

we check whether they have been visited. If x∈V j,
we use their past simulation outputs and generate only
one new observation. The historical and one additional
observations are used to calculate a new ˆ (x)µ of a
revisited solution. Otherwise, the NMSM generates new
m observations for calculating new ˆ (x)µ then registers x
into the visited set.

2.6. The Nelder-Mead Selection with Memory
and using Neighborhood (NMSMN)

The NMSMN is the NMSM integrated with a
neighborhood. It constructs a neighborhood for every
vertex of the simplex and estimates their objective
function values. The best solution in the neighborhood
replaces the original vertex. The advantages of the
NMSMN are that they utilize past information of
previous encounters and it also augments the search area
to their neighborhood. Let N(xj) be a neighbor set of xj
with ε = 0.01 in Equation 7. Thus Vj is a collection of
visited solutions and their neighborhood during the jth
iteration where V0 = φ. If x∉V j, Vj = Vj-1∪N(xj). The NM
are changed as follows: For x∈{x 0, x1, x2,…, xd, x

R, xE,
xC}, before generating new simulation outputs, we check

whether they are already visited solutions by the
algorithm in Fig. 4.

2.7. The Adaptive Nelder-Mead Selection with
Memory (ANSM)

The ANSM is NMSM, but when search reaches the
step of updating the simplex, the j j

1 2
ˆ ˆ(x), (x), ,µ µ …

j
d 1

ˆ (x)+µ are estimated by the NMSM where Step 4 is

modified as follows:
Step 4: Re-Order the Simplex Points In ascending orders

then compare all updated expected objective
functions of simplex points for determining the
mj+1 by Equation 6. Let j = j +1.

2.8. The Adaptive Nelder-Mead Selection with
Memory and using Neighborhood (ANSMN)

This modification applies ANSM, to the NMSMN.
It combines the advantage of utilizing memory of
revisited solution and their neighbors and efficiently
spending resources to ensure further progress approaching
to minimum objective function value.

2.9. Numerical Experiments

In section 2.3.1, we describe a set of test functions
and their starting solutions. Section 2.3.2 explains the
main figures of merit that we use to evaluate and
compare the performance of many modifications of the
NM. Section 2.3.3 discusses the empirical test setup.

2.10. Test Functions

We test the unconstrained optimization algorithm on
a set of six deterministic test functions; that is:

x xG(x,) g(x) ,ξ = + ξ (8)

 As ξx is an unbiased random element with E [ξx] = 0
and 2

x xV[]ξ = σ and g(x) is deterministic test problems.

These test functions are 2 dimensional (d = 2). Our standard
deviations, σx, are 0.75, 1.00 and 1.25 times g(x*) as
defined in Equation 8. Common random numbers are used.
Some of the selected functions have appeared in previous
studies. For example, test functions 2-5 are classical test
functions produced by More et al. (1981). They were also
used in Humphrey and Wilson (2000) and Barton and Ivey
(1996) for optimization of noisy responses. Test function 6
is adapted from Neddermeijer et al. (2000). Each of these
deterministic test functions has a unique optimum.

2.11. Test Function 1: Paraboloid Function
The paraboloid function is defined as:

Noocharin Tippayawannakorn and Juta Pichitlamken / Journal of Computer Science 9 (4): 463-476, 2013

469 Science Publications

JCS

d
2
i

i 1

g(x) x 1
=

= +∑

 The starting point is given by x = [d,d,…,d]. The
optimal of function value g* =1 is achieved at point x* =
[0,..,0]. Figure 5 depicts the polynomial function for
case d = 2. This function is concave, symmetric and
having only one minimum point. It is easy to optimize if
no noise exists. However, when noise is present,
optimization is difficult.

2.12. Test Function 2: Variably Dimensioned
Function

The variably dimensioned function is given by:

2
i

i 1

d 2

g(x) [f (x)] 1
=

+

= +∑

where fi (x) = xi -1 for i = 1,…,d,
d

d 1 j
j 1

f (x) j(x 1)+
=

= −∑

and

2
d

d 2 j
j 1

f (x) j(x 1) .+
=

= −

∑ The starting point is given by x =

[x1, x2, …, xd], where xj =1-(j/d), j = 1,2,…,d. The
optimal function value g* = 1 is achieved at point x* =
[1,…,1]. Figure 6 depicts the variably dimensioned
function for d = 2. The search area is U-curve, which is a
crossed flat area. There are numerous local minima in the
region of flat area but only one unique global minima exist.

2.13. Test Function 3: Trigonometric Function
The trigonometric function is defined as:

d

2
i

i 1

g(x) [f (x)] 1
=

= +∑

where for i=1,...,d,
d

i j
j 1

f (x) d cos(x 1) i[1
=

= − − + −∑ cos(xi-1)]

-sin(xi-1). The starting point is x = [1/d,…,1/d]. The
optimal of function value g* = 1 is achieved at point x*
= [1+2πk1,..,2πkd] where kj = 0±1, ±2,…

for j = 1,..,d.

Figure 7 illustrates the trigonometric function for d = 2.
This function is a sine curve and multi-modal minima.

2.14. Test Function 4: Extended Rosenbrock
 The extended Rosenbrock function is defined as:

d

2
i

i 1

g(x) [f (x)] 1
=

= +∑

where, for i=1,..,d/2, 2

2i 1 2i 2i 1f (x) 10(x x)− −= − and f2i(x) =
(1-x2i-1). The starting point is x = [-1.2,1,…, -1.2,1]. The
optimal of function value g* = 1 occurs at x* = [1,…,1].

Figure 8 depicts the extended Rosenbrock function for
the case of d = 2. This function is a non-convex function.
The global minimum is inside a long, narrow, parabolic
shaped flat valley. To find the valley is trivial. However, it
is difficult to converge to the global minimum.

2.15. Test Function 5: Brown’s Almost-Linear
Function

The Brown’s almost-linear function is given by:

d
2

i
i 1

g(x) [f (x)] 1
=

= +∑

where
d

i i j
j 1

f (x) x x (d 1)
=

= + − +∑ for i = 1,...,d-1 and

d

d j
j 1

f (x) x 1
=

= −

∏ . The solution x = [1/2,…,1/2] is used

as the starting point. The optimal function value g* = 1 is
achieved at the point x* = [λ,..,λ,λ1-d] where λ satisfies
dλd-(d+1) λd-1+1 = 0. Humphrey and Wilson (2000)
compute the value of λ is 0.5 for d = 2. Figure 9
illustrates the Brown’s almost-linear function for d = 2.
The function is not linearly separable and has the basic
form of a nonlinear least squares problem.

2.16. Test Function 6: Symmetrical Gaussian
Function

The symmetrical Gaussian function is defined as:

d
2

i
i 1

1
g(x) 2 exp [f (x)]

15000 =

= − −

∑

where, fi (x) =100-xi for i = 1,..,d. The starting point is x
= [70,…,70]. The optimal of function value g* = 1 is
achieved at the point x* = [100,..,100]. Figure 10 depicts
the symmetrical Gaussian function for d = 2. If any
starting point is in area of blended curve, it converges to
a unique global minimum point. On the other hand, if
any staring point is in flat area, it is difficult to reach the
minimum point.

2.17. Search Performance Measures

 When the search terminates, optimal solutions can
be estimated in at least 3 ways: The solution on-hand, the
most frequently visited solution, or the solution with the
best cumulative averages (Banks, 1998; Andradottir,
1999). Our preliminary experiments find that the
solutions on hand outperform other estimates for optimal
solutions. Motivated by Humphrey and Wilson (2000), we
evaluate the search performance via the average of the
following performance measures over many replications:

Noocharin Tippayawannakorn and Juta Pichitlamken / Journal of Computer Science 9 (4): 463-476, 2013

470 Science Publications

JCS

Fig. 5. Paraboloid function for d = 2

Fig. 6. Variably dimensioned function for d = 2

Noocharin Tippayawannakorn and Juta Pichitlamken / Journal of Computer Science 9 (4): 463-476, 2013

471 Science Publications

JCS

Fig. 7. Trigonometric function for d = 2

Fig. 8. Extended rosenbrock function for d = 2

Noocharin Tippayawannakorn and Juta Pichitlamken / Journal of Computer Science 9 (4): 463-476, 2013

472 Science Publications

JCS

Fig. 9. Brown’s almost-linear function for d = 2

Fig. 10. Symmetrical gaussian function for d = 2

Noocharin Tippayawannakorn and Juta Pichitlamken / Journal of Computer Science 9 (4): 463-476, 2013

473 Science Publications

JCS

2.18. Logarithm of the Total Number of
Simulation Outputs

To measure the computation work performed by a
simulation optimization procedure, we compute:

L ln(total number of simulation outputs)≡

It provides at best a rough indication of the total
computational work required by a simulation procedure.

2.19. Deviation of the Best Estimated Optimal
Function Value from the True Optimal Value

For a measure of accuracy of the best result delivered
by a simulation optimization procedure, we consider
Equation 9:

* *

*

ˆ(x) (x)
D

(x)

µ − µ
=

µ
 (9)

This measure cannot be employed for Test Function 1

since each coordinate of the true optimum for the
paraboloid function is equal to zero.

2.20. Empirical Test Setup

 Our implementations are run on MATLAB by modi-
fying fminsearch function. The NM coefficients are as
follow: α = 1, γ = 2, β = 0.5 and τ = 0.5. The initial step
size, si as shown in Equation 3, is 10−4. Minimum deviation
εx and µ̂ε are 10−4. Maximum budget consumption ̂Nµ and

Nsearch are 105. To estimate the objective function, the
sample size m is 6. Maximum neighborhood distance ε is
0.01. Three level of standard deviation of random noise ξx is
{0.75 g (x*), 1.00g (x*), 1.25 g (x*)}. The factor of
increasing simulation size b in Tomick (1995) is 1.25. We
perform 20 macroreplications (i.e., experiments) for each
test problem on 10 search algorithms as follows:

• NM-The original Nelder-Mead Simplex
• RS9-The Barton and Ivey stochastic modification
• ANRS9-Adaptive Nelder-Mead modification
• NMSM-The Nelder-Mead selection with memory
• NMSM+RS9-The NMSM with RS9
• NMSMN-The NMSM with using neighborhood
• NMSMN+RS9-The NMSMN with RS9
• ANSM-Adaptive Nelder-Mead selection with memory
• ANSM+RS9-ANSM with RS9
• ANSMMN-ANSM with using neighborhood
• ANSMMN+RS9-ANSMMN with RS9

3. RESULTS

Table 1 shows the budget consumption of each algo-
rithm until computation budget is exhausted or until the
search is unable to get any improvements. Table 2 contains

the average deviation in estimating the objective function
values as defined in (9). As expected, when the degree of
randomness increases, a given test problem becomes more
difficult. Most algorithms fare worse and their estimated
optimal solutions are further away from the optimal
solutions because all algorithms give smaller D at lower
random noise. That means *ˆ(x)µ is not far from µ (x*). On
the contrary, Test Function 4 is the most difficult to
optimize even when the level of randomness is low.
 Moreover, using the adaptive strategy with memory
gives the smallest D although the adaptive feature re-
quires more computational effort. For example, for Test
Function 1 and at all random noise levels, ANRS9 con-
sumes more computational resource than RS9, but it re-
wards with better estimated optimal solutions, i.e.,
smaller D . Similar results can be observed between
ANSM+RS9 and ANSMN+RS9 in comparison with
NMSM and NMSMN, respectively. Considering D, no
algorithms decisively wins at all noise levels, but almost
wining algorithms involve the adaptive method. Simi-
larly, when we consider L, no algorithms outperforms
completely at all noise levels.

For better comparison, we compare relative ratio of
both, L and D , between pairs of algorithms. The data
is divided into 3 sets. Firstly, comparing between the
adaptive and non-adaptive methods, e.g., ANRS9/RS9,
ANSM+RS9/NMSM +RS9 and ANSMN+RS9/NMSMN,
for most test functions and almost all noise levels, the
adaptive methods spends 79% more computation effort
than the non-adaptive methods, but they give better
estimates of the optimal solutions by reducing D, for
up to 50%. For example at σx =1.00 g(x*) for Test
Function 2, all adaptive algorithms, ANRS9,
ANSM+RS9 and ANSMN+ RS9, yield the estimates
of the optimal solutions closer to the true optimum
than the non-adaptive algorithms, RS9, NMSM+RS9
and NMSMN+RS9 respectively; D, is reduced ap-
proximately by 30% although they spend more
computational effort. Except for σx = 0.75g(x*) of
Test Function 3, the adaptive algorithms with using
memory (e.g., ANSM+RS9 and ANSMN+RS9) are
slightly less than the corresponding the non-adaptive
algorithms (i.e., NMSM+RS9 and NMSMN+RS9,
respectively); and for Test Function 4 with σx = {0.75
g(x*), 1.00g (x*)}, the adaptive algorithms with using
memory (e.g., ANSM+RS9 and ANSMN+RS9) the
true optimum, i.e., D increases. For Test Functions 1,
3, 5 and 6, D increases when the standard deviation
of random noise goes up, across all algorithms. For Test
Function 2, almost every algorithms also exhibit this pat-
tern except ANSMRS9. Moreover, the results show that
for Test Functions 1-3 and 5-6, it is not difficult to find
do not give better improvement than their counterparts.

Noocharin Tippayawannakorn and Juta Pichitlamken / Journal of Computer Science 9 (4): 463-476, 2013

474 Science Publications

JCS

Table 1. Logarithm of computational effort (L)
Test function

Factor --
 σx Algorithm 1 2 3 4 5 6
0.75 NM 2.58 2.44 2.46 2.52 2.43 2.42
 RS9 3.75 3.78 3.78 3.73 3.74 3.78
 NMSM 2.38 2.36 2.38 2.32 2.40 2.41
 NMSM+RS9 2.70 2.70 2.64 2.62 2.62 2.52
 NMSMN 2.42 2.41 2.38 2.48 2.32 2.41
 NMSMN+RS9 2.81 2.84 2.80 2.92 2.76 2.62
 ANRS9 4.61 4.48 4.57 4.66 4.62 4.69
 ANSM+RS9 3.08 3.21 2.45 2.89 3.05 2.64
 ANSMN+RS9 3.06 3.26 2.46 3.41 3.22 2.64
1.00 NM 2.55 2.44 2.42 2.55 2.45 2.44
 RS9 3.78 3.78 3.72 3.77 3.70 3.78
 NMSM 2.42 2.29 2.39 2.31 2.36 2.30
 NMSM+RS9 2.71 2.63 2.69 2.60 2.65 2.64
 NMSMN 2.44 2.42 2.37 2.35 2.40 2.30
 NMSMN+RS9 2.65 2.79 2.74 2.86 2.60 2.67
 ANRS9 4.46 4.56 4.68 4.59 4.63 4.70
 ANSM+RS9 3.18 3.18 2.98 3.07 3.05 2.95
 ANSMN+RS9 3.10 3.22 3.13 3.13 3.36 2.95
1.25 NM 2.55 2.42 2.42 2.53 2.47 2.42
 RS9 3.75 3.75 3.75 3.73 3.78 3.78
 NMSM 2.45 2.33 2.34 2.33 2.22 2.28
 NMSM+RS9 2.67 2.52 2.53 2.69 2.60 2.48
 NMSMN 2.45 2.40 2.32 2.51 2.36 2.28
 NMSMN+RS9 2.79 2.82 2.82 2.77 2.69 2.48
 ANRS9 4.65 4.48 4.69 4.59 4.64 4.62
 ANSM+RS9 3.26 3.09 2.97 3.11 2.91 3.19
 ANSMN+RS9 3.31 3.41 3.07 3.41 2.97 3.19

Secondly, comparing between memory and non-
memory methods, e.g., NMSM/NM, NMSM+RS9/RS9
and ANSM+RS9/ANRS9, the results show that memory
deployment saves on resource consumption, spending on
average 77% less than non-memory counterparts for all
test functions and noise levels, e.g., NMSM+RS9 and
ANSM+RS9 consume less resources for about 30%, than
RS9 and ANRS9, respectively. This is because solutions
that are less than εx apart are classified to be the same. If
the search revisits the already seen parts of the
solution space, it may use the sampling data from the
previous visits, instead of resampling anew. For most
test functions and noise levels, on average, utilizing
memory reduces deviation D by up to 80% of non-
utilizing memory, aside from Test Function 4 that
involves the adaptive methods. For example, Test
Function 5 for all noise levels, NMSM, NMSM+RS9
and ANSMN+RS9 give better optimal solutions by up
to 6% to 49% of NM, RS9 and ANRS9, respectively.

The rest of comparing is between neighbor and non-
neighbor methods, e.g., NMSMN/NMSM, NMSMN+RS9
/NMSM+RS9 and ANSMN+RS9/ANSM+RS9. Regarding

the memory-utilizing property, for all noise levels and
almost all test functions, except Test Function 4, the non-
adaptive methods which incorporate the neighbor-
structure neither saves computation effort nor improves
estimates of the optimal solution, e.g., on Test Functions
2 and 6, NMSMN and NMSMN+ RS9 give indistinguishable
results on D and L from NMSM and NMSM+RS9,
respectively. In other words, using neighbor-structure is
greedy and misled to a non-optimum compared to the
algorithms without neighbor-structure. On the other
hand, ANSMN+RS9 provides a better optimal solution
and spends less computation effort than ANSM+RS9 by
32% and 29%, respectively. These results show that using
neighbor-structure on adaptive algorithms provide
improved estimated optimal solutions. The search with
good performance when there is no limitation on
computational resource is AMSMN+ RS9 because it gives
the least D at all noise levels for most test functions, except
Test Function 4. If computational computational resource
is limited, NMSM+RS9 performs better.

Noocharin Tippayawannakorn and Juta Pichitlamken / Journal of Computer Science 9 (4): 463-476, 2013

475 Science Publications

JCS

Table 2. Average deviation of function value of algorithm from true function value (D)

 Test function

Factor --
 σx

Algorithm 1 2 3 4 5 6
0.75 NM 0.61 0.57 0.62 0.21 0.58 0.59
 RS9 0.92 0.95 0.97 0.33 0.94 0.92
 NMSM 0.45 0.54 0.61 0.15 0.54 0.54
 NMSM+RS9 0.69 0.70 0.73 0.17 0.68 0.63
 NMSMN 0.53 0.53 0.65 0.14 0.49 0.54
 NMSMN+RS9 0.70 0.72 0.77 0.27 0.66 0.72
 ANRS9 0.32 0.34 0.35 0.26 0.31 0.39
 ANSM+RS9 0.22 0.15 0.26 0.43 0.23 0.33
 ANSMN+RS9 0.20 0.23 0.26 0.38 0.24 0.33
1.00 NM 0.76 0.73 0.81 0.26 0.85 0.81
 RS9 1.22 1.26 1.29 0.56 1.26 1.22
 NMSM 0.69 0.70 0.80 0.21 0.78 0.75
 NMSM+RS9 0.92 0.92 0.94 0.23 0.89 0.99
 NMSMN 0.69 0.67 0.78 0.22 0.74 0.75
 NMSMN+RS9 0.85 0.92 0.96 0.36 0.88 0.87
 ANRS9 0.39 0.40 0.53 0.30 0.47 0.46
 ANSM+RS9 0.27 0.29 0.37 0.39 0.29 0.35
 ANSMN+RS9 0.29 0.28 0.34 0.35 0.27 0.35
1.25 NM 0.98 0.82 0.99 0.39 1.05 1.00
 RS9 1.53 1.60 1.62 0.88 1.62 1.57
 NMSM 0.98 0.96 0.85 0.23 0.84 0.92
 NMSM+RS9 1.05 1.06 1.12 0.56 1.14 1.12
 NMSMN 0.86 0.95 1.06 0.39 0.89 0.92
 NMSMN+RS9 1.25 1.15 1.28 0.47 1.26 1.12
 ANRS9 0.54 0.62 0.63 0.19 0.64 0.62
 ANSM+RS9 0.35 0.28 0.50 0.33 0.33 0.42
 ANSMN+RS9 0.37 0.37 0.50 0.32 0.34 0.42

4. DISCUSSION

We show that the Nelder-Mead algorithm which is
designed for deterministic optimization can be modified
to accommodate stochastic outputs. Using past in-
formation generally decreases computational effort and
not jeopardizes the performance significantly. Although
all adaptive-with-memory algorithms spends more com-
putational resources, they give better optimal solutions
comparing with their corresponding non-adaptive ones.
Exploiting neighborhood and utilizing memory are
helpful for adaptive algorithms, but not for non-adaptive
algorithms. The search performance is improved on
either ANSM+RS9 and ANSMN+RS9 for unconstrained
resource consumption, or NMSM and NMSMN for
economical resource consumption.

5. CONCLUSION

Utilizing past information in continouse optimization
saves computational resource. To improve an estimated
optimal solutions without limitation of computational
effort, uses past information corporates on adaptive
method. For our future work, we extend our algorithm to

discrete search space and apply simulation to decision
making such as queuing or inventory problem.

6. ACKNOWLEDGEMENT

 This study was supported by the Industrial Engineering
Department, Faculty of Engineering and the Graduate
School of Kasetsart University, Thailand. The authors
would like to thank Dr. Walailuck Chavanasporn,
Mathematics department, King Mongkut University of
Technology North Bangkok, for her editorial comments.
Some parts of this work were presented previously at the
Asia Simulation Conference 2011 in Seoul, Korea
(Tippayawannakorn and Pichitlamken, 2012).

7. REFERENCES

Alon, R., S.W. Feigelson, E. Manevich, D.M. Rose and
J. Schmitz et al., 2005. Alpha4beta1-dependent
adhesion strengthening under mechanical strain is
regulated by paxillin association with the alpha4-
cytoplasmic domain. J. Cell. Biol., 171: 1073-1084.

PMID: 16365170

Noocharin Tippayawannakorn and Juta Pichitlamken / Journal of Computer Science 9 (4): 463-476, 2013

476 Science Publications

JCS

Alrefaei, M.H. and S. Andradottir, 2005. Discrete
stochastic optimization using variants of the
stochastic ruler method. Naval Res. Logistics, 52:
344-360. DOI: 10.1002/nav.20080

Andradottir, S., 1999. Accelerating the convergence of
random search methods for discrete stochastic
optimization. Assoc. Comput. Mach. Trans. Model.
Comput. Simulat., 9: 349-380. DOI:
10.1145/352222.352225

Andradottir, S., 2006. Chapter 20 An Overview of
Simulation Optimization via Random Search. In:
Handbooks in Operations Research and Management
Science, Henderson, G.S. and B.L. Nelson (Eds.),
pp: 617-631.

Banks, J., 1998. Chapter 9 simulation optimization.
Principles, Methodol. Adv. Applic. Practice,

Barton, R.R. and J.S. Ivey, 1996. Nelder-Mead simplex
modifications for simulation optimization. Manage.
Sci., 42: 954-973. DOI: 10.1287/mnsc.42.7.954

Beyer, H.G. and H.P. Schwefel. 2002. Evolution
strategies-A comprehensive introduction. J. Natural
Comp., 1: 3-52. DOI: 10.1023/A:1015059928466

Carson, Y. and A. Maria, 1997. Simulation optimization:
Methods and applications. Proceedings of the 29th
Conference on Winter Simulation, Dec. 07-10,
IEEE Computer Society Washington, DC, USA.,
pp: 118-126. DOI: 10.1145/268437.268460

Dennis, J.E. and D.J. Woods, 1987. Optimization on
Microcomputers: The Nelder-Mead Simplex Algorithm.
In: Society for Industrial and Applied Mathematics,
Wouk, A. (Ed.), pp: 116-122.

Henderson, S.G. and B.L. Nelson, 2006. Simulation. 1st
Edn., Springer, Dordrecht, pp: 693.

Holland, J., 2000. Building blocks, cohort genetic
algorithms, and hyperplane-defined functions.
Evolut. Comput., 8: 373-391. DOI:
10.1162/106365600568220

Humphrey, D.G. and J.R. Wilson, 2000. A revised
simplex search procedure for stochastic simulation
response surface optimization. INFORMS J.
Comput. Fall, 12: 272-283. DOI:
10.1287/ijoc.12.4.272.11879

More, J.J., B.S. Garbow and K.E. Hillstrom, 1981.
Testing unconstrained optimization software. ACM
Trans. Mathemat. Software, 7: 17-41. DOI:
10.1145/355934.355936

Neddermeijer, H.G., G.J. Oortmarssen, N. Piersma, R.
Dekker and J.D.F. Habbema, 2000. Adaptive
extensions of the nelder and mead simplex method
for optimization of stochastic simulation models.
Econometric Institute Report, Erasmus University
Rotterdam, Econometric Institute.

Nelder, J.A. and R. Mead, 1965. A simplex method for
function minimization. Comput. J., 7: 308-313. DOI:
10.1093/comjnl/7.4.308

Olafsson, S. and J. Kim, 2002. Simulation optimization:
Simulation optimization. Proceedings of the 34th
Conference on Winter Simulation: Exploring New
Frontiers, (WSC ‘02), ACM Press, pp: 79-84.

Pichitlamken, J. and B.L. Nelson, 2003. A combined
procedure for optimization via simulation. ACM
Trans. Model. Comput. Simulat., 13: 155-179. DOI:
10.1145/858481.858485

Pichitlamken, J., B.L. Nelson and L.J. Hong, 2006. A
sequential procedure for neighborhood selection-of-
the-best in optimization via simulation. Eur. J.
Operat. Res., 173: 283-298. DOI:
10.1016/j.ejor.2004.12.010

Press, W.H., S.A. Teukolsky, W.T., Vetterling and B.P.
Flannery, 2007. Section 10.12. Simulated Annealing
Methods In Numerical Recipes: The Art of
Scientific Computing. 3rd Edn., Cambridge
University Press, New York, ISBN-10: 0521880688
pp: 549-555.

Shi, L. and S. Olafsson, 2009. Nested Partitions
Optimization. In: Encyclopedia of Optimization,
Christodoulos, A.F. and P.M., Panos, (Eds.), pp:
2533-2539.

Spendley, W., G.R. Hext and F.R. Himsworth, 1962.
Sequential application of simplex designs in
optimisation and evolutionary operation.
Technometrics, 4: 441-461.

Swisher, J.R., P.D. Hyden, S.H. Jacobson and L.W.
Schruben, 2004. A survey of recent advances in
discrete input parameter discrete-event simulation
optimization. IIE Trans., 36: 591-600. DOI:
10.1080/07408170490438726

Tippayawannakorn, N. and J. Pichitlamken, 2012
Nelder-mead method with local selection using
neighbor hood and memory for optimization via
simulation. Proceedings of the Advanced Methods,
Techniques and Applications in Modeling and
Simulation, (AMTAMS’ 12), pp: 134-143.

Tomick, J.J., 1995. On convergence of the nelder-mead
simplex algorithm for unconstrained stochastic
optimization. Pennsylvania State University.

Tomick, J.J., S.F. Arnold and R.R. Barton, 1995. Sample
size selection for improved Nelder-Mead performance.
Proceedings of Winter Simulation Conference, Dec.
3-6, IEEE Xplore Press, Arlington, VA., pp: 341-
345. DOI: 10.1109/WSC.1995.478754

