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ABSTRACT

We consider the Nelder-Mead (NM) simplex algoritfion optimization of discrete-event stochastic
simulation models. We propose new modificationsNi¥ to reduce computational time and to
improve quality of the estimated optimal solutiol®ur means include utilizing past information of
already seen solutions, expanding search spadeetorteighborhood and using adaptive sample sizes.
We compare performance of these extensions oresixftinctions with 3 levels of random variations.
We find that using past information leads to reductof computational efforts by up to 20%. The
adaptive modifications need more resources thamémeadaptive counterparts for up to 70% but give
better-quality solutions. We recommend the adaptigorithms with using memory with or without
neighborhood structure.

Keywords: Nelder-Mead Simplex, Adaptive Nelder-Mead Simpl&gntinuous Stochastic Optimization,
Neighborhood Search, Local Selection

1. INTRODUCTION in a neighborhood of the current solution, e.ge th
Stochastic Ruler (Alrefaei and Andradottir, 2005)da
An Optimization via Simulation (OvS) is the problem the Simulated Annealing (Pressal., 2007). A set-based
of finding possible set of input variables or damis  Strategy generates a set of candidate solutioms fo
variables that give maximum or minimum objective subset of the feasible region, e.g., the NestetitiBas
function values. In addition, a simulation optintiza Method (Shi and Olafsson, 2009) and the Nelder-Mead
also aims at minimizing computational resourcesnspe Simplex (Nelder and Mead, 1965). A population-based
while maximizing the information obtained in 'a Strategy creates a collection of candidate solstizsing
simulation experiment (Carson and Maria, 1997). ke~ some properties of the previously visited solutjofus
interested in the OvS problems that have stochasticexample, the Genetic Algorithm (Holland, 2000) el
objective functions and continuous decision vaegabl Evolutionary Strategies (Beyer and Schwefel, 2002).
(Alon et al., 2005; Henderson and Nelson, 2006; Olafsson ~ We focus on the Nelder-Mead (NM) simplex algorithm
and Kim, 2002; Swishegt al., 2004) for OvS surveys. (Nelder and Mead, 1965), which is originally deyeld for
Many OvS tools are developed for unconstrained unconstrained deterministic optimization. It dentates
continuous problems. Most of them are based on thewide versatility and ease of use such that it jglémented
random search method that takes objective functionin MATLAB as a functionfminsearch. The NM is also
values from a set of sample points and uses tharobust with respect to small random variations e t
information to select the next points. Various t@ghes  observed objective function values; therefores iised for
differ in the choice of sampling strategies (Ancrttid, optimizing stochastic problems as well (Tomick, 399
2006). A point-based strategy involves samplingnf®i  Humphrey and Wilson, 2000) However, in the cas¢ tha

Corresponding Author: Noocharin Tippayawannakorn, Department of Indak&ngineering, Faculty of Engineering.
Kasetsart University, Bangkok, 10900, Thailand

///// Science Publications 463 JCs



Noocharin Tippayawannakorn and Juta Pichitlamké#oufnal of Computer Science 9 (4): 463-476, 2013

variability in the objective function values arefiiently adjacent to any given vertices. The original simglensists
large, the NM may terminate before reaching théoalo  of the reflection of one vertex through the ceutrof the
optima. For this, Barton and Ivey (1996) propose th opposite face. Sometimes a sequence of reflectings
algorithm RS9 that improve NM performance for s&stit  the search back to where it starts. Nelder and M&265)
problems by increasing the shrink parameter andadd expansion and contraction moves to accelehate t
recalculating every point of shrink simplex. search and a shrink step is introduced to decréeese
_In this study, we propose variants of the NM by |engihs of edges adjacent to the current bestwbytéalf,
utilizing past information and/or proximate points. i3 case that none of the steps brings acceptable
Specifically, we incorporate: improvement to the original simplekigure 1 illustrates
+ Information collected since the search begins and  2-dimensional trial points for a simplex consistofge, x;
«  Searchmeighborhood and %. The solid lines simplex is initialized. Otherdin
] ) . style simplexes show various simplex operatiorg, @n
With numerical experiments, we show that our gypansion point isct, a reflection point isx?, internal
algorithms provide better solutions while requiritegs d ; | iract int c d X
computational efforts than the original NM. an 8).( erna con.rac ion p0|rl1 S are, ar? X2
Generally, an OvS problem can be defined aerSpfcft'V(T'y and C ']?fth? centr(;:d ﬁf the 2 be:mpo_By
follows: The objective is to determine an optimal the default setting 0 mm;earc_(t e NM impleragion
: N S o n MATLAB), a single simulation output (m = In
solution, x*, that minimizes the unknown objective . . : I s
. ) . . . Equation2) is an estimate of an objective functip¢x) .
function, 2 ®- R over a continuous feasible region, . .
OOR % that is, x' =argminy (x).where, X0 is a vector The. oyerall Ioglpal steps of the NM algorlthm_ are
T T " ! ) shown inFig. 2 and it can be explained in more details as
of d decision variablé8 and x is called a solutidhe

follows.
objective functionu(x) cannot be observed directly; thus, o N )
it is estimated with stochastic simulation, i.eutpn 1: 2.2. Initialization: Create an Initial Simplex

. . e
u(x) = E; [ G(xE,)] @ giieeﬁggnsstartmg point (X®, a vector of d

where, G (X,) is a simulation output evaluatedatand Form an initial simplex of d+1 points, by defining:

&, is an unbiased random element witg, ] = 0 and X, =X X0 X; +§ 0% 1 i=1,2,..,d (3)
V[E,] =o>. The estimate gi(x), [i(x), is a sample mean

of m independent simulation outputs: where, sare the user-specified initial step sizes.

« Estimate the objective function values at eachef t
d+1 simplex points from m independent simulation

. 1&
A(x) =G(X)=H;G(X£i) ) outputs by computing its sample averages via
" Equation 2 to gefi(x,).i(x,).....i(x,) then initialize
This study is organized as follows: Section 2 the iteration number j = 4nd a number of observation
introduces the original form of the NM simplex aligfam, of simulation outputs, count = m(d+1)

its existing variants, our extensions and descridmsgn
of numerical experimens. Section 3 shows of nurakric
results. Section 4 discusses the results. Ultimatek
conclude in section 5.

2. MATERIALS AND METHODS

2.1. The Nelder-Mead Simplex Algorithm
2.1.1. Original NM

The first of the simplex methods is due to
Spendley et al. (1962) for deterministic problems. They
assume that any point in the domain of search @n b
constructed by taking a linear combination of tldges Fig. 1. All simplex operations of the Nelder-Mead simplex
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Fig. 2. Flow chart for the'f iteration of the Nelder-Mead simplex algorithm

* Re-order these points in a non-decreasing order sdunction value {i(x}) is estimated via m simulation

that fi(x,) < fi(x,) <... <[i(x,)

While maxJ X = %|<e, and

i=1,2,..,

maxJﬁ(X)—ﬁ("x)jssn, j<Nsearch and count< N, are

i=1,2,...,

true.

Step 1: Calculate the Reflection Point

A worst point on the simplex (recall that we

consider a minimization problem, so the worst pasnt
one with the highest sample meag) x4 is replaced

with another point which has a lower objective
function. Let x; be the reflection of the worst point

and x passes through the centroid a@ the d-best
points. These points are computed

1d—1
as C:szj and X; =C+0(C-x%,) where,a <0 is a
i

reflection parameter; typically 1. Then the objeeti

////4 Science Publications

OU'[pUtS then count = count+m.
Step 2: Update the Simplex

Figure 3 shows an initial simplex with dash lines and
an updated simplex with solid lines. The updated
simplex depends on the relationship betwgexf) and

A(Xo) A (x,),... , f(xq); that is:

oI f(xg) s A(xE) <fxey) SEtxg < xg and fi(xy) «
(i(x}) as shown ifFig. 3a Then go to Step 4.

o If p(x5)<f(x,), the search continues in the same
direction by calculating the expansion poiujt=C+
y(x® -c) where y>0 is an expansion parameter,
typically 2. Then ﬁ(xg) is estimated from m

simulation outputs by Equation 2, then count = ¢oun
+ m. The expansion point is accepted when it
improves over the best point in the simpley, &s
shown inFig. 3b; otherwise, the reflection point is
accepted. Go to Step 4.
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Fig. 3. Operations of the NM simplex method

If fi(x..)<p(xf), the search reduces the simplex size by Step 4: Re-order

calculating the contraction pointx$=C+p(x,-C),

where,3>0 is a contract parameter (generally 0.5) and

%4 Is x5 if A(x}) <f(x,) and x otherwise. The objective

function [i(x$) is estimated then count = count+m. If

a(x$) = (x,) , go to Step 3; otherwise, the contraction point

is accepted, i.e.x, « x§. The updated simplex can be
one of two solid-line simplexes iRig. 3c depending on
which as the optimalk” and i(x"), respectively,when
when the search terminates. Contraction poix§ dr

x%) is used. Go to Step 4.
Step 3: Shrink the Simplex

If the reflection point and contraction point piae
no improvement, then the simplex is shrunk towduel t
best point ¥ as shown inFig. 3d. Compute the new
simplex as follows:

(4)

where,T is a shrink parameter, typically 0.5. The objec-
tive function values of these new points are edtaha
count = count +md. Then go to Step 4.

[Xo X, + (A= T)X(, TX,+ (L-T)Xgpe- o, TXg+ (A T)X,]
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the Simplex Points in
Ascending Orders
Then letj =j+1.
End while

Returnx” and [i(x") .

2.3. Barton and Ivey Stochastic Modification of
NM and its Variant (RS9 and ANRS9)

Barton and Ivey (1996) adapt the NM algorithm to
accommodate stochastic variations in the objedtimetion
values. From empirical results, they see that lsecdie
NM algorithm relies on the ranks of the objectivadtion
values at the simplex vertices, it can make pregias
presence of relatively small randomness which duss
change the rank of the function value at the sirmpénts.
However, if the variations in the function value darge
enough, it affects the relative rank of the simplexrtices
and misleads the algorithm.

Barton and Ivey (1996) recommend the shrinkage
coefficient (in Equatiod) of 0.9 instead of the usual 0.5 to
increase the extent of reduction after shrink. Tdhiange
improves the performance effectively for the casbsre
the original NM fails. Resampling the best poirteaghrink
reduces the frequency of contraction, but thigegsais not
effective in improving algorithm performance.

JCS
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Moreover, Barton and Ivey (1996) apply another and complete local search with memory for solving

stopping criterion for stochastic problems, as sstgd

the uncapacitated facility location problem

by Dennis and Woods (1987). The search terminates(PiChitlamke” et al., 2006). At each iteration, the

when the simplex size is sufficiently small:

d
_Zl:"xi =X

= < 5
max (1] x| )< &x ®)

where, {i(x,) <fi(x,) <...<fi(x,), and is the Euclidean

norm, i.e., x| =/x; +x3+--+x . Besides the stopping

criteria in Equatiorb, their so-called RS9 is the NM with
the following modifications: The objective functida
estimated with 6 independent simulation outputs=(&
in Equation 2); every solution is resampled evéangetit

search iteratively moves from the current solutton
one of its neighbors which is better than itselfl amy
other solutions in the neighbor-hood. Neighborhood
search strategy and statistical selection of th&t bee
used in OvS in Tomiclet al. (1995) followed by a
framework for OvS in Moret al. (1981).

First, we define an “already-visited solution” athat
is not “too far” from the one already seen|v,~x|_=
max Vv - x| = ¢ where, ||.4 is the uniform norm|x| =
max| x| |%|... | x|} , and the neighbor distancesee,
wheree, =10* similar to the terminating criterion of the
fminsearch. We select the neighbor v which provithes
minimum g as distinguishable from x. For an example
of  2-dimensional  problem, suppose x =

is encountered (no search history is kept); and the(1.00018,2.50101), ;v= (1.00018, 2.50110) and, =

shrinkage coefficient is 0.9.

(1.0011,2.50101), v= (1.00015, 2.601010) then &

The rescaling operations of the NM algorithm can max {|1.00018-1.0018],|2.50101-2.50110}= 9216, =

lead to a too-early termination at a non-optimumoise is
present. Tomicket al. (1995) modify the RS9 further to
allow the sample sizes to adjust adaptively tootheerved
noise in the solution space, called ANRS. Supplusem
is the minimum number of observations taken at st
trial point during the] iteration and fh= 6:

(6)

o [bm' | if & /(do®)< X3
m! otherwise

where, b = 1.25 is a factor to increase the sasipks d
is a size of the decision variable [x] is the largest
integer smaller than x:

i=1| k=1 i=1 k=1

artf ml 2 drind 2
Z{Z u(Xik)} {ZZU(XW )]
m @+ )m

d

$=

is the mean square treatments from Analysis ofarae
(ANOVA), o? is the variance of white nois€, in
Equationl andx?, is ana upper percentile of the chi-

square distribution with d degree of freedom.
2.4.New Variants of the Nelder-Mead Simplex
Algorithm

We are motivated by several
optimization algorithms for deterministic problertisat

general-purpose

max (|1.0018-1.0011|,|]2.50104[yx10°, & = max(|1.0018-
1.00015|,]2.50101-2.60101) = 0.1. Singei® greater
thang,, v3 does not belong to N(>@nd we select vto
represent x becausg<e, and it has the smallest uniform-
norm distance from x.

We define the neighborhood of solution x =
[X1,Xo,...,%4] @s N(X) consisting of all already-seen solu-
tions which lie inside the region of:

[X; =& X s Xgl [X 1 H & X e, XL [X 4 X =&, X ],

(@)

[Xp X, + &, Xglhen s [Xy X ey X g HE]

where, ¢ is the user-specified maximum neighborhood
distance. We exclude any neighbors that lie outtdige
feasible spac®, or ones which are further tharfrom
any given x.

The aim of using past information is to save
simulation effort by avoiding sampling at every
encounter. In our implementation of the NM seaixé,
compare the sample averages of all candidatesedect s
the one with the smallest average as the winner.

We propose two NM-based algorithms with memory
as follows.

2.5. The Nelder-Mead Selection with Memory
(NMSM)

Simulation outputs that have been obtained for
revisited solutions and their candidate solutiores kept

in a database and they replace new sampling. Meless,

are based on a neighborhood Search; for examm, thfor already'seen SOIUtionS, NMSM adds one simufatio

very large scale neighborhood search (Pichitlandmech
Nelson, 2003), neighborhood search based on taivatse
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output every time it is encountered so as to ptatee
search from unusually good or bad history.
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For each x {x,.x,,x,,...x,.5%,x".x") whether they are already visited solutions by the
If x=V7!, % embedded NMSM Algorithm algorithm inFig. 4.
Add one new simulation output and calculate cu-
mulative sample means as a new [(x)and let 2.7. The Adaptive Nelder-Mead Selection with
caunt = caunt +1 . Memory (ANSM)
Flse % x & V!
For everyx' € Nix). compute a new j(x’) as fol- The ANSM is NMSM, but when search reaches the
low. N _ ) step of updating the simplex, th@'(x,), i’ (x,), ...,
If there is any revisited neighbor x'eV*', use )
their cumulative simulation outputs. ﬁJ(Xd+l) are estimated by the NMSM where Step 4 is
Else there is any first encounter x' ¢ V™', generate modified as follows:
m simulation outputs, then register x' into
the set of ¥/, Let count = count +md. Step 4: Re-Order the Simplex Points In ascendidgrsr
Endif _ N then compare all updated expected objective
If there exist many nearest neighbors X in N(x), functions of simplex points for determining the
select a .solution that give the minimum f(x") |'T]j+1 by Equation 6. Letj - ] +1.
to be x’ and add a new observation then cal-
culate cumulative sample means as a new 2.8. The Adaptive Nelder-Mead Selection with
A(x’) then let count =count +1. Memory and using Neighborhood (ANSMN)
Else % there exist only one x' in N(x)
Use a generated new p(x") and collects x' in- This modification applies ANSM, to the NMSMN.
to the set of ¥/ . It combines the advantage of utilizing memory of
End if revisited solution and their neighbors and effidien
End for spending resources to ensure further progress agipny

End if
End for

Fig. 4. NMSMN algorithm 2.9. Numerical Experiments

to minimum objective function value.

; . - . ) In section 2.3.1, we describe a set of test funstio
o Let V' be a collection of visited sol_utlon_s1 during the gnd their starting solutions. Section 2.3.2 explaine
ot ¢ : tons I the _ : 3.
" iteration where V= ¢, If xOV! then V.= V-ux. The  main figures of merit that we use to evaluate and
NM is changed as follows: before generating new compare the performance of many diioations of the

simulation outputs G(&)) for XO{xo,Xu, %z, ... X, X\ X, NM. Section2.3.3 discusses the empirical test setu
x%}, we check whether they have been visited. /% - wectionz.<. P -

we use their past simulation outputs and generalg 0 2.10. Test Functions

one new observation. The historical and one additio . o .
observations are used to calculate a ng) of a We test the unconstrained optimization algorithm on

revisited solution. Otherwise, the NMShenerates new @ Set of six deterministic test functions; that is:
m observations for calculating nefix) then registers x _
into the visited set. C(XE)=90)+E, ®)

2.6. The Nelder-Mead Selection with Memory As &, is an unbiased random element with¢g F O
and using Neighborhood (NMSMN) and V[ ]=0? and gk) is deterministic test problems.
The NMSMN is the NMSM integrated with a The_se_ test functions are 2 dimensional (d =_2).§fandard
neighborhood. It constructs a neighborhood for pver deviations, o, are 0.75, 1.00 and 1.25 times<y(as
vertex of the simplex and estimates their objective defined in Equation 8. Common random numbers &d. us
function values. The best solution in the neighboth ~ Some of the selected functions have appeared inopee
replaces the original vertex. The advantages of thestudies. For example, test functions 2-5 are daksest
NMSMN are that they utilize past information of functions produced by Moret al. (1981). They were also
previous encounters and it also augments the seaeeh  used in Humphrey and Wilson (2000) and Barton aeg |
to their neighborhood. Let N{jxbe a neighbor set of x  (1996) for optimization of noisy responses. Tescfion 6
with € = 0.01 in Equation 7. Thus'\s a collection of is adapted from Neddermeijeral. (2000). Each of these
visited solutions and their neighborhood during fie  deterministic test functions has a unique optimum.

; : O I\ = \/iL i
g?eraé'r?gngggrgsvf;ﬁxs)f E\éﬂ’é 0_)\(/ )L(JZ N(x );%T?(g ':l(EM 2.11. Test Function 1: Paraboloid Function
. y 1y yreey ] ’ ’

x%}, before generating new simulation outputs, weckhe The paraboloid function is defined as:
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9= % +1

The starting point is given by x = ft§,..,d]. The
optimal of function value g* =1 is achieved at goit =
[0,..,0]. Figure 5 depicts the polynomial function for
case d = 2. This function is concave, symmetric and
having only one minimum point. It is easy to optimif
no noise exists. However, when noise is present,
optimization is difficult.

2.12.Test Function 2: Variably Dimensioned
Function

The variably dimensioned function is given by:

d+2
g(x) = Z[fi(X)]2 +1
where f(X) = x-1fori=1,...d, f,.(x) :ij(xj—l) and

2
d
f 4 a(X) ={Zj(xj—l)} . The starting point is given by x =
j=1

[X1, X2, ..., Xg], wWhere x =1-(j/d), j = 1,2,..,d. The
optimal function value g* = 1 is achieved at pawit=
[1,...,1]. Figure 6 depicts the variably dimensioned
function for d = 2. The search areallscurve, which is a
crossed flat area. There are numerous local mininthe
region of flat area but only one unique global miiexist.

2.13. Test Function 3: Trigonometric Function
The trigonometric function is defined as:

900 =Y 11,0017 +1

d
where for i=1,...,df,(x) =d = cos(x - 1)+ i[1- cos(x-1)]

j=1
-sin(x-1). The starting point is x = [1/d,,1/d]. The
optimal of function value g* = 1 is achieved at ftox*
= [1+2rkg,..,2rKg] where k = Ot1, +2,... for j = 1,..,d.
Figure 7 illustrates the trigonometric function for d = 2.
This function is a sine curve and multi-modal miaim

2.14. Test Function 4: Extended Rosenbrock
The extended Rosenbrock function is defined as:

900= 31100 +1

where, for i=1,..,d/2,f,_,(x) =10(x,, — x5_,) and §(x) =
(1-X;i.1). The starting point is x = [-1.2,1,,.-1.2,1]. The
optimal of function value g* = 1 occurs at x* = [1,1].

////4 Science Publications 46

Figure 8 depicts the extended Rosenbrock function for
the case of d = 2. This function is a non-convexction.
The global minimum is inside a long, narrow, paliabo
shaped flat valley. To find the valley is trivillowever, it

is difficult to converge to the global minimum.

2.15. Test Function 5: Brown's Almost-Linear
Function

The Brown’s almost-linear function is given by:

909=3 11 (I +1

d
where f,(x) =x, +> x, —(d+1) fori=1,...,d-1and

j=1
d

f4(x) =(|‘ij] -1. The solution x =[1/2,...,1/2] is used
=

as the starting point. The optimal function valde=d. is
achieved at the point x* 2A[..AAYY where\ satisfies
d\%(d+1) A*+1 = 0. Humphrey and Wilson (2000)
compute the value ok is 0.5 for d = 2.Figure 9
illustrates the Brown’s almost-linear function for= 2.
The function is not linearly separable and hashasic
form of a nonlinear least squares problem.

2.16.Test Function 6: Symmetrical
Function

The symmetrical Gaussian function is defined as:

o 13
g(x)=2 exn{ —15000; [f (x)lz}

where, f(x) =100-x for i = 1,..,d. The starting point is x
= [70,...,70]. The optimal of function value g* = & i
achieved at the point x* = [100,..,10Fgure 10 depicts
the symmetrical Gaussian function for d = 2. If any
starting point is in area of blended curve, it cenges to

a unique global minimum point. On the other harid, i
any staring point is in flat area, it is difficuti reach the
minimum point.

Gaussian

2.17. Search Performance Measures

When the search terminates, optimal solutions can
be estimated in at least 3 ways: The solution ardhthe
most frequently visited solution, or the solutioithathe
best cumulative averages (Banks, 1998; Andradottir,
1999). Our preliminary experiments find that the
solutions on hand outperform other estimates fdinma
solutions. Motivated by Humphrey and Wilson (200G
evaluate the search performance via the averagheof
following performance measures over many replioatio

9 JCS
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Fig. 5. Paraboloid function for d = 2

Function value

Coordinate-2 Coordmate-1
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2.18. Logarithm of the Total Number of

Simulation Outputs

the average deviation in estimating the objectivaction
values as defined in (9). As expected, when theedegf
randomness increases, a given test problem becmmes

To measure the computation work performed by adifficult. Most algorithms fare worse and their iestted

simulation optimization procedure, we compute:
L =In(total number of simulation output

It provides at best a rough indication of the total
computational work required by a simulation progedu

2.19.Deviation of the Best Estimated Optimal
Function Value from the True Optimal Value
For a measure of accuracy of the best result delive

by a simulation optimization procedure, we consider
Equation 9:

HX) - u(x)

k 9)
H(x)

D=

This measure cannot be employed for Test Fundtion

optimal solutions are further away from the optimal
solutions because all algorithms give smalferat lower
random noise. That meap$x’) is not far fromp (x*). On
the contrary, Test Function 4 is the most diffictdt
optimize even when the level of randomness is low.
Moreover, using the adaptive strategy with memory
gives the smallesD although the adaptive feature re-
quires more computational effort. For example, Test
Function 1 and at all random noise levels, ANRSS-co
sumes more computational resource than RS9, bat it
wards with better estimated optimal solutions,, i.e.
smaller D. Similar results can be observed between
ANSM+RS9 and ANSMN+RS9 in comparison with
NMSM and NMSMN, respectively. Considering, no
algorithms decisively wins at all noise levels, hirmost

since each coordinate of the true optimum for thewining algorithms involve the adaptive method. Simi

paraboloid function is equal to zero.
2.20. Empirical Test Setup

Our implementations are run on MATLAB by modi-
fying fminsearch function. The NM coefficients aae
follow: a = 1,y =2, = 0.5 andr = 0.5. The initial step
size, sas shown in Equatio, is 10?. Minimum deviation
& andg, are 10*. Maximum budget consumptioN; and

Nsearcn @re 16, To estimate the objective function, the
sample size m is 6. Maximum neighborhood distanise
0.01. Three level of standard deviation of rand@mset, is
{0.75 g (x¥), 1.00g (x*), 1.25 g (x¥)}. The factoof
increasing simulation size b in Tomick (1995) i851.We
perform 20 macroreplications (i.e., experiments) for each
test problem on 10 search algorithms as follows:

NM-The original Nelder-Mead Simplex

RS9-The Barton and lvey stochastic modification
ANRS9-Adaptive Nelder-Mead modification
NMSM-The Nelder-Mead selection with memory
NMSM+RS9-The NMSM with RS9

NMSMN-The NMSM with using neighborhood
NMSMN+RS9-The NMSMN with RS9
ANSM-Adaptive Nelder-Mead selection with memory
ANSM+RS9-ANSM with RS9

ANSMMN-ANSM with using neighborhood
ANSMMN+RS9-ANSMMN with RS9

3. RESULTS

Table 1 shows the budget consumption of each algo-

rithm until computation budget is exhausted or |uh
search is unable to get any improvemehadle 2 contains
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larly, when we consider L, no algorithms outperferm
completely at all noise levels.

For better comparison, we compare relative ratio of
both, L andD, between pairs of algorithms. The data
is divided into 3 sets. Firstly, comparing betwebe
adaptive and non-adaptive methods, e.g., ANRS9/RS9,
ANSM+RS9/NMSM +RS9 and ANSMN+RS9/NMSMN,
for most test functions and almost all noise levéie
adaptive methods spends 79% more computation effort
than the non-adaptive methods, but they give better
estimates of the optimal solutions by reducibg for
up to 50%. For example at, =1.00 g(x*)for Test
Function 2, all adaptive algorithms, ANRS9,
ANSM+RS9 and ANSMN+ RS9, yield the estimates
of the optimal solutions closer to the true optimum
than the non-adaptive algorithms, RS9, NMSM+RS9
and NMSMN+RS9 respectivelyD, is reduced ap-
proximately by 30% although they spend more
computational effort. Except foo, = 0.75g(x*) of
Test Function 3, the adaptive algorithms with using
memory (e.g., ANSM+RS9 and ANSMN+RS9) are
slightly less than the corresponding the non-adepti
algorithms (i.e., NMSM+RS9 and NMSMN+RS9,
respectively); and for Test Function 4 with= {0.75
g(x*), 1.00g (x*)}, the adaptive algorithms with ing
memory (e.g., ANSM+RS9 and ANSMN+RS9) the
true optimum, i.e.D increases. For Test Functions 1,
3, 5 and 6,D increases when the standard deviation
of random noise goes up, across all algorithmg. Tlest
Function 2, almost every algorithms also exhibig fhat-
tern except ANSMRS9. Moreover, the results show tha
for Test Functions 1-3 and 5-6, it is not diffictdt find
do not give better improvement than their countaspa
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Table 1.Logarithm of computational effort (L)

Test function

Factor
Oy Algorithm 1 2 3 4 5 6

0.75 NM 2.58 2.44 2.46 2.52 2.43 2.42
RS9 3.75 3.78 3.78 3.73 3.74 3.78
NMSM 2.38 2.36 2.38 2.32 2.40 2.41
NMSM+RS9 2.70 2.70 2.64 2.62 2.62 2.52
NMSMN 2.42 2.41 2.38 2.48 2.32 2.41
NMSMN+RS9 2.81 2.84 2.80 2.92 2.76 2.62
ANRS9 4.61 4.48 4.57 4.66 4.62 4.69
ANSM+RS9 3.08 3.21 2.45 2.89 3.05 2.64
ANSMN+RS9 3.06 3.26 2.46 3.41 3.22 2.64

1.00 NM 2.55 2.44 2.42 2.55 2.45 2.44
RS9 3.78 3.78 3.72 3.77 3.70 3.78
NMSM 2.42 2.29 2.39 2.31 2.36 2.30
NMSM+RS9 2.71 2.63 2.69 2.60 2.65 2.64
NMSMN 2.44 2.42 2.37 2.35 2.40 2.30
NMSMN+RS9 2.65 2.79 2.74 2.86 2.60 2.67
ANRS9 4.46 4.56 4.68 4.59 4.63 4.70
ANSM+RS9 3.18 3.18 2.98 3.07 3.05 2.95
ANSMN+RS9 3.10 3.22 3.13 3.13 3.36 2.95

1.25 NM 2.55 2.42 2.42 2.53 2.47 2.42
RS9 3.75 3.75 3.75 3.73 3.78 3.78
NMSM 2.45 2.33 2.34 2.33 2.22 2.28
NMSM+RS9 2.67 2.52 2.53 2.69 2.60 2.48
NMSMN 2.45 2.40 2.32 2.51 2.36 2.28
NMSMN+RS9 2.79 2.82 2.82 2.77 2.69 2.48
ANRS9 4.65 4.48 4.69 4.59 4.64 4.62
ANSM+RS9 3.26 3.09 2.97 3.11 291 3.19
ANSMN+RS9 3.31 3.41 3.07 3.41 2.97 3.19

Secondly, comparing between memory and non-the memory-utilizing property, for all noise leveasd
memory methods, e.g., NMSM/NM, NMSM+RS9/RS9 aimost all test functions, except Test Functiothd, non-
and ANSM+RS9/ANRSY, the results show that memory yqantive methods which incorporate the neighbor-
deployment saves on resource consumption, spensing structure neither saves computation effort nor owups
average 77% less than non-memory counterpartslifor a™ . :
test functions and noise levels, e.g., NMSM+RS9 angestimates of the optimal solution, €.g., on 'I'_es*l.tdﬁt.)ns
ANSM+RS9 consume less resources for about 30%, thar? and 6, NMSMN and NMSMN+ RS9 give indistinguisieabl
RS9 and ANRSY, respectively. This is because soisti results onD and L from NMSM and NMSM+RS9,
that are less thagy apart are classified to be the same. If respectively. In other words, using neighbor-suitetis
the search revisits the already seen parts of thegreedy and misled to a non-optimum compared to the
solution space, it may use the sampling data froen t algorithms without neighbor-structure. On the other
previous visits, instead of resampling anew. FOSMO gy ANSMN+RS9 provides a better optimal solution
test functions and noise levels, on average, Wiz 5,4 gnends less computation effort than ANSM+RS9 by

memory reduces deviatio® by up to 80% of non- o o . :
utilizing memory, aside from Test Function 4 that 32% and 29%, respeciively. These results showsiag

involves the adaptive methods. For example, Test"€ighbor-structure on adaptive algorithms provide
Function 5 for all noise levels, NMSM, NMSM+RS9 improved estimated optimal solutions. The searcth wi
and ANSMN+RS9 give better optimal solutions by up good performance when there is no limitaton on
to 6% to 49% of NM, RS9 and ANRS9, respectively. computational resource is AMSMN+ RS9 because igiv
The rest of comparing is between neighbor and non-the leastD at all noise levels for most test functions, excep
neighbor methods, e.g., NMSMN/NMSM, NMSMN+RS9 Test Function 4. If computational computationalorgse

/INMSM+RS9 and ANSMN+RS9/ANSM+RS9. Regarding is limited, NMSM+RS9 performs better.
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Table 2. Average deviation of function value of algorithrorh true function vaIue{B)

Test function

Factor
Oy Algorithm 1 2 3 4 5 6
0.75 NM 0.61 0.57 0.62 0.21 0.58 0.59
RS9 0.92 0.95 0.97 0.33 0.94 0.92
NMSM 0.45 0.54 0.61 0.15 0.54 0.54
NMSM+RS9 0.69 0.70 0.73 0.17 0.68 0.63
NMSMN 0.53 0.53 0.65 0.14 0.49 0.54
NMSMN+RS9 0.70 0.72 0.77 0.27 0.66 0.72
ANRS9 0.32 0.34 0.35 0.26 0.31 0.39
ANSM+RS9 0.22 0.15 0.26 0.43 0.23 0.33
ANSMN+RS9 0.20 0.23 0.26 0.38 0.24 0.33
1.00 NM 0.76 0.73 0.81 0.26 0.85 0.81
RS9 1.22 1.26 1.29 0.56 1.26 1.22
NMSM 0.69 0.70 0.80 0.21 0.78 0.75
NMSM+RS9 0.92 0.92 0.94 0.23 0.89 0.99
NMSMN 0.69 0.67 0.78 0.22 0.74 0.75
NMSMN+RS9 0.85 0.92 0.96 0.36 0.88 0.87
ANRS9 0.39 0.40 0.53 0.30 0.47 0.46
ANSM+RS9 0.27 0.29 0.37 0.39 0.29 0.35
ANSMN+RS9 0.29 0.28 0.34 0.35 0.27 0.35
1.25 NM 0.98 0.82 0.99 0.39 1.05 1.00
RS9 1.53 1.60 1.62 0.88 1.62 1.57
NMSM 0.98 0.96 0.85 0.23 0.84 0.92
NMSM+RS9 1.05 1.06 1.12 0.56 1.14 1.12
NMSMN 0.86 0.95 1.06 0.39 0.89 0.92
NMSMN+RS9 1.25 1.15 1.28 0.47 1.26 1.12
ANRS9 0.54 0.62 0.63 0.19 0.64 0.62
ANSM+RS9 0.35 0.28 0.50 0.33 0.33 0.42
ANSMN+RS9 0.37 0.37 0.50 0.32 0.34 0.42
4. DISCUSSION discrete search space and apply simulation to idecis

making such as queuing or inventory problem.
We show that the Nelder-Mé algorithm whichis

designed for deterministic optimization can roedified 6. ACKNOWLEDGEMENT
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