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We propose an optimization-via-simulation algorithm for use when the performance measure is
estimated via a stochastic, discrete-event simulation, and the decision variables may be subject to
deterministic linear integer constraints. Our approach—which consists of a global guidance system,
a selection-of-the-best procedure, and local improvement—is globally convergent under very mild
conditions.
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1. INTRODUCTION

We use the term optimization via simulation to refer to the problem of maximiz-
ing or minimizing the expected (long-run average) performance of a discrete-
event, stochastic system that is represented by a computer simulation model.
Typical optimization-via-simulation algorithms that are found in the research
literature try to move in relatively improving directions while utilizing some
form of randomization to escape from local optimal solutions. Andradóttir’s
[1998] tutorial discusses a number of such methods, including the stochas-
tic ruler algorithm [Yan and Mukai 1992], variants of simulated annealing
altered to accommodate randomness (e.g., Gelfand and Mitter [1989], Gutjahr
and Pflug [1996], and Alrefaei and Andradóttir [1999]), and Andradóttir’s [1995,
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1996] random search algorithms. Most of these algorithms can be shown to con-
verge globally as the sampling effort increases. Fu [2002]—which is an update
of Fu [1994]—provides an up-to-date tutorial on optimization-via-simulation
research and practice. Swisher et al. [2004], which is notable for its broad
reference list, extends and updates Jacobson and Schruben’s [1989] survey.
Goldsman and Nelson [1998] summarizes statistical procedures applicable in
the simulation context.

In contrast to globally convergent methods, heuristics that seem to work well
in practice have actually been implemented in commercial software. To provide
some statistical validity for these heuristics, Boesel [1999] and Boesel et al.
[2003a] suggest applying a ranking-and-selection procedure at the end of the
search to allow the combined algorithm to make a correct-selection guarantee
with respect to all solutions visited during the search; while useful, this “clean-
up” approach does not ensure global convergence.

In this article, we attempt to bridge the gap between current research and
practice. We propose a framework and specific algorithms for a broad class
of discrete-decision-variable, optimization-via-simulation problems. Within our
framework, it is possible to incorporate a variety of smart heuristics to achieve
good empirical performance, while still maintaining a global convergence
guarantee.

Specifically, our goal is to solve problems of the following generic form:

max
x∈2

µ(x) (1)

when 2 is defined by the following constraints:
q∑

i=1

aij xi ≤ bj , j = 1, 2, . . . , p

0 ≤ li ≤ xi ≤ ui < ∞, i = 1, 2, . . . , q (2)

li, xi, ui ∈ Z+ ∪ {0}, i = 1, 2, . . . , q

where Z+ denotes the positive integers. Thus, we assume that the feasible
region 2 is convex and finite. To avoid triviality, we also assume that 2 is
nonempty. The finiteness of 2 allows us (conceptually) to index the solutions
x and the corresponding performance measures as follows: 2 = {x1, x2, . . . , xv}
where v denotes the number of feasible solutions in 2, and µi ≡ µ(xi). With-
out loss of generality, we let the set of global optimal solutions be 2∗ =
{xv∗ , xv∗+1, . . . , xv} where 1 ≤ v∗ ≤ v.

We assume that the function µ(x) is unknown, but we can estimate µi via a
simulation experiment. The observed performance of solution i on replication
p of the simulation is denoted by Yip, so that µi = E[Yip]. Let σ 2

i = Var [Yip].
Both the performance measure µi and its variance σ 2

i are assumed finite for all
i ∈ {1, 2, . . . , v}. Further, the observed performance measures Yip, p = 1, 2, . . . ,
are independent and identically distributed (i.i.d.), and independent of Y j s for
i 6= j . We assume nothing else about the simulation output. These assump-
tions imply that our results are appropriate for any simulation experiment—
terminating or steady state—that employs replications, and could conceivably
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Fig. 1. Illustration of the NP approach for the (s, S) inventory problem.

be used within a single run of a steady-state simulation if appropriate initial-
ization and batching strategies are employed.

Our optimization framework consists of a global guidance system, a selection-
of-the-best procedure, and local improvement. The global guidance system en-
sures the convergence of the search so that, given sufficient time, it reaches and
selects one of the optimal solutions. Specifically, we adopt the philosophy of Shi
and Ólafsson’s [2000] Nested Partition (NP) method. NP is based on identify-
ing a sequence of “most-promising” subregions of 2. When better solutions are
found inside the current most-promising region, then the region is partitioned
for finer exploration. On the other hand, when better solutions are found outside
the current most-promising subregion, then NP backtracks to a superregion of
it. The idea is to concentrate the computational effort where there appear to be
good solutions but not be trapped locally.

Figure 1 illustrates the NP approach for an (s, S) inventory problem (Koenig
and Law [1985]; see Sect. 4.1 for a brief description). Define x1 ≡ s and x2 ≡ S.
The constraints for this problem (in the form of (2)) are: x1 − x2 ≤ 0, 20 ≤ x1 ≤
80, 40 ≤ x2 ≤ 100, x1, x2 ∈ Z+.

Initially, the feasible region 2 is partitioned into some number of subre-
gions, two in this illustration (see Figure 1(a)). Solutions are sampled within
each subregion, their performance estimated via simulation, and the most-
promising region is the one that contains the solution with the best (estimated)
performance as indicated by the circled solution. The most-promising region is
then partitioned further (see Figure 1(b)), and all other regions are aggregated
into a “surrounding region.” Again, solutions are sampled. If a subregion is
most promising, then it is partitioned further (see Figure 1(c)) and the process
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continues. If the surrounding region has the best solution, then the search back-
tracks; in this illustration it backtracks to the original feasible region, 2 (see
Figure 1(d)). When the most-promising region contains only a single solution,
we refer to it as a singleton region.

The NP method provides the overall guidance system, but our implemen-
tation of it differs from Shi and Ólafsson’s in two important ways: First, we
select the most-promising region as the region that contains the best estimated
solution using all data that have been obtained up to that point, while they use
only samples obtained on the current NP iteration (this allows them to preserve
a Markov property of the search). Second, at search termination they choose
the solution that has been the most-promising singleton region most often;
we choose the solution with the largest sample mean accumulated over all vis-
its to that solution. Our choices permit a proof of almost sure convergence to
an optimal solution under less restrictive conditions than Shi and Ólafsson. Of
equal importance, our approach allows us to enhance empirical performance
by incorporating local improvement schemes and statistical ranking and selec-
tion procedures without losing the convergence properties. We describe these
enhancements next.

Because the NP method provides a diversification element (i.e., sampling the
surrounding region), local improvement is intended to provide an intensification
component. The idea is to improve performance on problems where |2| is large,
but good solutions are clustered, or where |2| is large, but the response surface
is smooth. Local improvement helps the search explore2more intensively near
good solutions.

A hill-climbing (HC) algorithm constitutes our local-improvement scheme.
We chose HC because it is intuitively simple: The current solution on hand
is compared with some (or all) of its neighboring solutions, and the winner
becomes the next solution. This neighborhood selection of the best is repeated
until some stopping criterion is satisfied. Its simplicity aside, HC is also appeal-
ing because it is readily applicable in our problem setting where a neighborhood
is easy to define. However, more sophisticated local-improvement schemes, in-
cluding tabu search and response-surface methods, could easily be incorporated.
Shi et al. [2001] incorporate local improvement into an NP-based method for
solving a class of deterministic integer programming problems.

Each NP iteration, and each HC step, requires selecting the best solution
from among a number of candidates (the sampled solutions for NP, and the
neighboring solutions of the current best for HC). Sequential Selection with
Memory (SSM) was designed to provide a highly efficient method for selecting
the best—maximum or minimum expected performance—from among a small
number of candidate solutions while controlling the chance of an incorrect se-
lection. SSM is fully sequential with elimination, which means that it takes
simulation outputs one at a time from the solutions under consideration and
eliminates (ceases sampling) solutions as soon as they are shown to be inferior.
SSM is specially designed for use in optimization algorithms that revisit solu-
tions because it exploits whatever data have already been obtained. Under cer-
tain conditions, SSM guarantees to select the best, or a near-best, solution with
a user-specified probability, where “near-best” means within a user-specified
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Fig. 2. Continuation region of SSM.

indifference level, δ > 0. (See Shi and Chen [2000] for a similar idea based on
the “Optimal Computing Budget Allocation” method.)

The continuation region for SSM (see Figure 2) illustrates the elimination
step. Suppose we have only two solutions, xi and x j . SSM continues taking
simulation outputs as long as the sum of the difference between the simula-
tion outputs of solutions i and j ,

∑r
p=1(Yip − Y j p), stays within the triangular

region. The sum can leave this region in three ways, as shown in the figure.
The procedure is finite; at most, SSM takes one simulation output beyond the
continuation region. Note that SSM is intended to aid optimization algorithms
in making a correct selection over a subset of solutions, not to provide any
correct-selection guarantee over all of 2 (see Pichitlamken and Nelson [2001]
and Pichitlamken [2002] for details).

To implement the NP method for our chosen class of problems (1)–(2), we
had to address two key technical issues. The first was to provide a partition-
ing scheme, which we solved using a strategy based on the Branch and Bound
method. The second was to provide a method to randomly sample solutions from
the (convex) subregions and the (nonconvex) surrounding region. For this pur-
pose, we derived algorithms MIX-D and MIX-DS, respectively. Both algorithms
generate a Markovian tour {X0, X1, . . . , XT }, where Xt is a feasible solution in
the region of interest.

Figure 3 illustrates Algorithm MIX-D on a two-dimensional2. From a start-
ing solution inside the region, Algorithm MIX-D samples a direction that the
Markovian tour will take (see Figure 3(a)). With the selected direction, MIX-
D computes how far the tour can travel without leaving the region (see Fig-
ure 3(b)). In this illustration, the tour can proceed at most one step in the posi-
tive direction and three steps in the negative direction. MIX-D then uniformly
samples the step length it will take; in Figure 3(c), MIX-D uniformly samples
from {−1, 1, 2, 3} and gets 1 as an outcome. MIX-D then traverses one step in
the selected direction, and the current position of the tour is at X1. This process
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Fig. 3. Illustration of MIX-D.

is repeated for several steps, and the sampled solution returned by MIX-D is
the current state of the Markov chain when it stops at step T (see Figure 3(d)).
Algorithm MIX-DS is essentially Algorithm MIX-D, sampling over 2, but with
extra calculations to ensure that the generated Markov chain remains outside
the most-promising region at all times.

A property of MIX-D and MIX-DS is that as the tour length T approaches
infinity, the distribution of XT is uniformly distributed over the subregion. Al-
though the uniformity property of the solution sampling algorithms is not re-
quired to attain global convergence in our framework, it is desirable in prac-
tice: Since we assume no knowledge of the response surface µ(x), we count on
the MIX-D and MIX-DS algorithms to ensure diversity, while the NP method
focuses on promising solutions.

We call our combined scheme the NP+SSM+HC Algorithm. Our algorithm
converges with probability 1 to a global optimal solution as the number of
iterations approaches infinity. For the case of a unique optimum (v∗ = v), the
convergence rate is O(k−1/2), where k is the number of iterations, and we have
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a Central Limit Theorem that allows us to form a confidence interval for the
maximum performance measure µv.

The article is organized as follows: We give an overview of the NP+SSM+HC
algorithm in Section 2, followed by detailed descriptions of each of its compo-
nents in four subsections; any subsection can be skipped without loss of continu-
ity. The global convergence properties are stated in Section 3. We compare our
algorithm to other schemes via numerical examples in Section 4 and give some
concluding comments in Section 5. All the proofs, and some algorithms, can be
found in the Online Appendix. The complete empirical study is in Pichitlamken
[2002].

2. NP+SSM+HC

We give a high-level description of NP+SSM+HC below.

(1) Initialization. Set the iteration counter k = 1, the current most-promising
region Rk = 2, the number of observations on the ith solution ni(k) = 0 for
all i ∈ {1, 2, . . . , v}, and the initial estimate of the optimal solution xî∗k−1

to a
user-provided initial solution.

(2) Search and Selection. Repeat Steps (2)(a)–(2)(f) until the simulation ef-
fort (i.e., clock time or the number of simulation replications allowed) is
exhausted:
(a) Partitioning. If the current most-promising region Rk is not a single-

ton, then partition Rk into disjoint regions Rk1, Rk2, . . . , Rkω(Rk ) (see
Section 2.1). Let Mk = ω be the number of subregions. Then, if Rk 6= 2,
aggregate the surrounding region; let Mk = Mk+1 and RkMk = 2\Rk .

(b) Sampling. For each region Rk`, ` = 1, 2, . . . , Mk , randomly sample ϑ
solutions from Rk`. (If xî∗k−1

∈ Rk`, include it as one of these ϑ sampled
solutions from Rk`. See Sect. 2.2.) Aggregate all the sampled solutions
xi into a set through their indices i; let Sk denote the set of indices of
sampled solutions.

(c) Selection of the Best Solution. Take1nfree observations of Yip from every
solution xi, i ∈ Sk . Use SSM or SSM(REGION) to select the best solution
over Sk , which we denote as x̂∗(Sk) (see Section 2.3). If the simulation
effort is exhausted, go to the Search termination step.

(d) Algorithm Hill Climbing. If the criterion for using HC is satisfied, per-
form Algorithm Hill Climbing with x̂∗(Sk) as a starting solution (see
Section 2.4). Let xî∗k

be the solution deemed best by HC. If the simula-
tion effort is exhausted, go to the Search termination step.

(e) Updating the Most-Promising Region. If xî∗k
∈ Rk , then its subregion

Rk` that contains xî∗k
becomes the new most-promising region, Rk+1;

otherwise, the search backtracks to the superregion of Rk , which can
be either 2 or Rk−1. Increment k = k + 1.

(f) Restart. Restart at iteration k if Rk−k0+1 = Rk−k0+2 = · · · = Rk (see
Appendix A for the calculation of k0) by letting Rk = 2; change the
partitioning criterion (see (7) below).
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(3) Search Termination. The best solution selected by NP+SSM+HC is the one
with the maximum cumulative sample average; that is, the selected solution
is xî∗ where

Ȳi(r) ≡
r∑

p=1

Yip/r (3)

î∗ ≡ arg max
1≤i≤v
{Ȳi(ni(k)) : ni(k) > 0}. (4)

We further describe each component of NP+SSM+HC in the following sec-
tions (see Pichitlamken [2002] for complete details). A reader who is more inter-
ested in numerical results may skip these sections and continue on to Section 4.

To clarify the presentation that follows, let a region, which we will generically
denote as τ , be a finite, convex subset of 2 characterized by:

q∑
i=1

aτi j xi ≤ bτj , j = 1, 2, . . . , pτ

0 ≤ l τi ≤ xi ≤ uτi < ∞, i = 1, 2, . . . , q (5)

l τi , xi, uτi ∈ Z+ ∪ {0}, i = 1, 2, . . . , q.

A region is infeasible when there exists a constraint j ∈ {1, 2, . . . , pτ } such that∑
i:aτi j>0

aτi j l
τ
i +

∑
i:aτi j<0

aτi j u
τ
i > bτj . (6)

2.1 Partitioning Scheme

The goal is to partition a convex, feasible region τ of the form defined in (5) into
disjoint subregions, each of which remains convex.

Input: A convex, feasible region τ of the form (5), number of subregions ω and branching
criterion: BIGGEST, SMALLEST or RANDOM range (see (7)).
Output: ω′ ≤ ω disjoint feasible subregions τ1, τ2, . . . , τω′ of τ where

ω′⋃
`=1

τ` = τ and τ`

⋂
τ`′ = ∅ for ` 6= `′.

Procedure:

(1) Select a variable to branch on. Let i′ be the index of the variable to be partitioned,
where i′ is defined as

i′ ≡


argmax1≤i≤q{uτi − l τi } if criterion = BIGGEST RANGE

argmin1≤i≤q{uτi − l τi } if criterion = SMALLEST RANGE (7)

i with probability 1/q for i ∈ {1, 2, . . . , q} if criterion = RANDOM.

(2) Keep the constraints and the bounds on other variables xi , i 6= i′ in (5) unchanged.
Divide the range of xi′ , uτi′ − l τi′ , into ω approximately equal intervals that can be
characterized by the integer cutpoints {c1 = l τi′ , c2, . . . , cω′+1 = uτi′ }, where ω′ ≤ ω is
the number of subregions we can actually form. Table I shows how the cutpoints are
computed. Let [χ ] denotes rounding χ to the closest integer.

(3) Based on the cutpoints c`, ` ∈ {1, 2, . . . , ω′}, create a new region τ`. The constraints
that define τ` consist of the constraints that define τ with one modification: the bound
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Table I. Cutpoint computation for Algorithm Partition

c1 = l τi′
ε = (uτi′ − l τi′ )/ω
` = 1

while (c` ≤ uτi′ ) do
` = `+ 1

c` =
{

[c`−1 + ε], if [c`−1 + ε] > c`
[c`−1 + ε]+ 1, otherwise

end while

constraint on xi′ now becomes c` ≤ xi′ ≤ c`+1. That is, the constraint coefficients
characterizing τ` are:

aτ`i j = aτi j and bτ`j = bτj , ∀i, j

l τ`i = l τi and uτ`i = uτi , ∀i 6= i′ (8)
l τ`i′ = c` and uτ`i′ = c`+1.

After adding the tighter bound on xi′ , if region τ` is still feasible (in the sense of (6)),
then update it by tightening variable bounds and eliminating redundant constraints.
With the set of constraints (8), we recalculate the bounds for each variable i, i =
1, 2, . . . , q [Wolsey 1998];

l τ`i ← max

{
l τ`i , max

j∈{1,2,... , pτ }

{
bτ`j −

∑
h6=i aτ`hj x

′
h

aτ`i j
: aτ`i j < 0

}}

uτ`i ← min

{
uτ`i , min

j∈{1,2,... , pτ }

{
bτ`j −

∑
h6=i aτ`hj x

′
h

aτ`i j
: aτ`i j > 0

}}
where x

′
h is set to l τ`h if aτ`hj > 0 and uτ`h if aτ`hj < 0. Finally, we remove a nonbinding

constraint j ∈ {1, 2, . . . , pτ } if∑
i:a

τ`
i j >0

aτ`i j uτ`i +
∑

i:a
τ`
i j <0

aτ`i j l τ`i ≤ bτ`j .

The computational complexity of the partitioning scheme is linear with re-
spect to the number of subregions ω, the number of variables q and the number
of constraints pτ .

On iteration k, after the most-promising region Rk is partitioned, and the
surrounding region is aggregated, solutions are sampled from each subregion.
We describe the solution sampling scheme next.

2.2 Solution Sampling Scheme

NP+SSM+HC requires sampling within the subsets of the most-promising re-
gion Rk , which are convex, and within the surrounding region, which is not
convex. Our discrete-variable sampling algorithms extend Smith’s [1984] Mix-
ing Algorithm, which is for continuous spaces: Algorithm MIX-D samples an
integer solution from a convex region of the form (5) (we will denote it as τ for
simplicity), and Algorithm MIX-DS samples an integer solution from 2 \ Rk .
Algorithm MIX-DS is essentially Algorithm MIX-D, sampling over 2, but with
extra calculations to ensure that the generated Markov chain remains outside
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Rk at all times. Therefore, we only provide the details of MIX-D here; MIX-DS
can be found in Appendix B.

To characterize MIX-D, we need the following definitions: A random tour
{Xt , t ≥ 0} is a sequence of Xt ∈ Zq . A direction is characterized by two end
points, one of which is the origin. A discrete interval [ a, b ], for a ≤ b and
a, b ∈ Z, is defined as

[ a, b ] ≡
{ {a} for a = b
{a, a + 1, . . . , b} for a < b.

Algorithm MIX-D
Input: A closed convex region τ of the form (5), number of solutions to be sampled ϑ ,
length of warm-up period T , and a starting solution x0 ∈ τ .
Output: ϑ random integer solutions which are feasible in τ .
Procedure:

(1) Initialization: Set X0 = x0, t = 1 and the set of sampled solutions S = ∅.
(2) Generating random solutions:

(a) Sample a random scaled direction:
(i) Sample a random direction Ut ≡ (U1t , U2t , . . . , Uqt) uniformly over the set
D(x, τ ), where

D(x, τ ) ≡ {U : Ui ∈
[

l τi − xi , uτi − xi

]
, i = 1, 2, . . . , q

} \ {0}. (9)

That is, for each dimension i, Uit is sampled uniformly from an integer inter-
val [ l τi − xi , uτi − xi ] independently from every other dimension but rejecting
the zero vector 0.

(ii) Scale the direction Ut with the gcd of all Uit , i = 1, 2, . . . , q, to yield the
scaled direction Dt ≡ (D1t , D2t , . . . , Dqt) where

Dit ≡ Uit

gcd1≤r≤q{Urt} , i = 1, 2, . . . , q,

and gcd1≤i≤q{a1, a2, . . . , aq} is the greatest common divisor for all ai , i =
1, 2, . . . , q.

(b) Determine the set of possible integral increments:

C(Xt−1, Dt , τ ) ≡ {C ∈ Z : Xt−1 + CDt ∈ τ and C 6= 0} (10)

= [C−t (τ ), C+t (τ )
] \ {0},

where

Cj t(τ ) ≡ b̃τj − ãτj Xt−1

ãτj Dt
(11)

C−t (τ ) ≡ max
1≤ j≤pτ+2q

{dCj t(τ ) : Cj t(τ ) < 0e} (12)

C+t (τ ) ≡ min
1≤ j≤pτ+2q

{bCj t(τ ) : Cj t(τ ) > 0c}. (13)

Note that dxe is x rounded up to the next largest integer, and bxc is x truncated
to the next smallest integer. If C(Xt−1, Dt , τ ) = ∅, then set C(Xt−1, Dt , τ )={0}.

(c) Sample Ct uniformly on C(Xt−1, Dt , τ ).
(d) Update Xt and t:

Xt = Xt−1 + CtDt , (14)
t = t + 1.
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(e) If t < T , go to Step (2)(a); otherwise, insert XT into the set S if XT 6∈ S. If S has
ϑ solutions, return the set S; otherwise, set t = 0, X0 = XT , and go to Step (2)(a).

It is worth noting that finding a solution x0 to initialize MIX-D can be an
NP-Hard problem.

By construction, MIX-D generates solutions that constitute a Markov chain,
a Markov Chain that follows a uniform distribution over τ as the length of the
random tour T goes to infinity:

THEOREM 2.1. The limiting distribution of the MIX-D Markov chain {Xt :
t ≥ 0} is uniform over τ .

See the Online Appendix to this article for a proof.
After we sample solutions from all subregions, we use SSM to select the

best. To make this article self-contained, we briefly describe this procedure in
the next section (see Pichitlamken and Nelson [2001] and Pichitlamken [2002]
for complete details).

2.3 Sequential Selection with Memory

In NP+SSM+HC, we use SSM for the selection of a new most-promising region
for NP, and in determining when the HC algorithm has found an improved
solution.

Without loss of generality, let the finite number of solutions under consider-
ation be denoted by {x1, x2, . . . , xκ}. SSM assumes the observations taken from
xi, Yip, to be i.i.d. normally distributed with finite mean µi and variance σ 2

i .
Although the normality assumption is used to establish the correct-selection
guarantee of SSM, the probability 1 convergence of NP+SSM+HC to an opti-
mal solution does not depend on the normality of the output data (see Section 3
below). For convenience of exposition, assume that the true means of the solu-
tions are indexed such that µ1 ≤ µ2 ≤ · · · ≤ µκ . The best solution is defined as
the one with the largest mean, which is therefore µκ .

Our procedure guarantees to select xκ with probability at least 1−αwhenever
the difference between the best and the next-best solution is worth detecting:

Pr{select xκ} ≥ 1− α whenever µκ − µκ−1 ≥ δ. (15)

The indifference-zone parameter is denoted by δ > 0. Even when the
indifference-zone condition is not satisfied (µκ − µκ−1 < δ), SSM still selects
a “good” solution (one whose mean is within δ of µκ ) with probability at least
1− α (see Pichitlamken [2002] for the proof).

In SSM, we sequentially take one observation at a time from surviving solu-
tions, immediately followed by screening. To make this precise, we define some
notation: Let i ∈ {1, 2, . . . , κ}.

V = set of solutions we have “visited” before; ni ≥ n0 for i ∈ V
V c = set of solutions we see for the first time; ni < n0 for i ∈ V c

= {1, 2, . . . , κ} \ V

Nij =
⌊aij

λ

⌋
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Ni = max
j 6=i
{Nij }

N = max
1≤i≤κ

Ni (16)

σ 2
i j = Var (Yip − Y j p)

n0 = minimum initial number of observations from any solution
S2

i j = estimator of σ 2
i j

= 1
n0 − 1

n0∑
p=1

(Yip − Y j p − [Ȳi(n0)− Ȳ j (n0)])2 (17)

f = n0 − 1.

Note that Ni + 1 is the maximum number of observations taken from xi.

Procedure SSM
(1) Initialization. For each xi , i ∈ V c, take n0 − ni observations (n0 ≥ 2), and set

ni = n0. Compute S2
i j , ∀i 6= j .

(2) Procedure Parameters. We choose λ and aij as follows:

λ = δ

2
and aij =

f S2
i j

4(δ − λ)

[(
κ − 1

2α

)2/ f

− 1

]
. (18)

If n0 > N (as defined in (16)), stop and select the solution with the largest Ȳi(ni)
(as defined in (3)) as the best. Otherwise, let I = {1, 2, . . . , κ} be the set of surviving
solutions, set r = n0, and proceed to Screening. From here on V represents the set
of solutions on which we have obtained more than r observations, while V c is the
set of solutions with exactly r observations.

(3) Screening. Set I old = I where

I = {i : i ∈ I old and Yi ≥ max
j∈Iold, j 6=i

(Y j − aij )+ rλ
}

Y j =
{∑r

p=1 Y j p for j ∈ V c

rȲ j (nj ) for j ∈ V .

In essence, for xi with ni > r, we substitute rȲi(ni) for
∑r

p=1 Yip.

(4) Stopping Rule. If |I | = 1, then stop and report the only survivor as the best; other-
wise, for each i ∈ (I ∩V c), take one additional observation from xi and set r = r +1.
If r = N + 1, terminate the procedure and select the solution in I with the largest
sample average as the best; otherwise, for each i ∈ (I ∩ V ) with ni = r, update V
and V c: V c = V c ∪ {i} and V = V \ {i}. Go to Screening.

SSM is a generic procedure that could be integrated into many optimization-
via-simulation algorithms. SSM(REGION) is a refinement that is useful within an
NP framework. SSM(REGION) intends to save simulation effort by terminating
SSM when all surviving solutions belong to the same subregion. This is useful
in an NP step where all we need to do is to identify the subregion that contains
the best sampled solution, not necessarily the best solution itself.

Let S∗k be the set of solution indices of the surviving solutions when
SSM(REGION) terminates on iteration k. The best solution selected by
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SSM(REGION) is:

x̂∗(Sk) = {xi : i = argmaxi∈S∗k Ȳi(ni)
}
. (19)

After SSM or SSM(REGION) selects the best solution from the set of sampled
solution, we attempt to improve it further with hill climbing, as described below.

2.4 Local Improvement

Algorithm Hill Climbing (HC) is essentially a greedy heuristic that iteratively
moves from the current solution to one of its neighboring solutions until some
stopping criterion is satisfied. In our algorithm, the available options for em-
ploying HC are: (a) do not perform HC at all, (b) perform HC on all iterations,
or (c) perform HC if the improvement in successive iterations is “big enough,”
that is, ∣∣Ȳî∗k

(
nî∗k

)− Ȳî∗k−1

(
nî∗k−1

)∣∣ > 2δ, (20)

where δ is the indifference-zone parameter of SSM (see (15)).

Procedure Hill Climbing
(1) Initialization. Set t = 0 and X0 to a starting solution.
(2) Search. Repeat Steps (2)(a)–(2)(d) until the stopping criterion is satisfied (see

Remark below):
(a) Neighborhood Construction. For Xt = (X 1t , X 2t , . . . , X qt), construct a hypercube:
B(Xt) ≡ 5q

i=1[X it − ξ, X it + ξ ], where ξ ∈ Z+. Update B(Xt) so that B(Xt) ⊆ 2.
(b) Solution Sampling. Use MIX-D (see Section 2.2) to sample $ solutions from
B(Xt). Aggregate the indices of the sampled solutions into a set S loc

t .
(c) Selection of the Best. Use SSM (see Section 2.3) to select the best solution whose

index is î∗loc
t from S loc

t .
(d) Update the Best Solution. Xt+1 = x

î∗loc
t

and t = t + 1.

(3) Termination. Return Xt .

Remark 2.2. The options for the stopping criterion are: (a) to perform HC
once, (b) to perform HC until î∗loc

t = î∗loc
t−1 , or (c) to perform HC until∣∣Ȳî∗loc

t

(
nî∗loc

t

)− Ȳî∗loc
t−1

(nî∗loc
t−1

)
∣∣ < δ, (21)

where δ is an indifference-zone parameter. The motivation for (21) is similar to
the rationale behind (20); with (21), however, HC stops if the perceived progress
is too small.

Thus far, we have described how NP+SSM+HC works. In the next section,
we establish its global convergence properties, which are not just an aggre-
gation of the attributes of each component—partitioning, solution sampling,
SSM, HC, and updating of the most-promising region—but also a result of
their interactions.
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3. PROPERTIES OF NP+SSM+HC

In Lemma 3.1, we establish that every solution in 2 is sampled infinitely often
in the limit. The Strong Law of Large Numbers then leads us to almost sure
convergence of NP+SSM+HC (see the Online Appendix for a proof).

LEMMA 3.1. For all i ∈ {1, 2, . . . , v}, limk→∞ ni(k) = ∞.
THEOREM 3.2. NP+SSM+HC converges almost surely to one of the global

optimal solutions as k → ∞; that is, a solution xî∗ , where î∗ is defined in (4),
belongs to the set of optimal solutions almost surely as k→∞.

Theorem 3.2 guarantees that our algorithm converges to a global optimal
solution in the limit. In Theorem 3.3, Andradóttir [1999] provides us with an
O(k−1/2) convergence rate for the case of a unique optimum (v∗ = v). Note
that Theorem 3.2 holds when there are multiple optimal solutions, but in such
cases we were unable to extend Andradóttir’s convergence rate results to our
algorithm. Theorem 3.3 also allows us to form a confidence interval for the
maximum performance measure µv.

THEOREM 3.3. If the optimal solution is unique, and î∗ satisfies (4), then√
1nfreek (Ȳî∗ (nî∗ (k))− µv) ⇒ N

(
0, σ 2

v

)
,

where⇒ denotes convergence in distribution.

4. NUMERICAL EXPERIMENTS

We consider the performance of NP+SSM+HC relative to other optimization
schemes on an (s, S) inventory problem and a three-stage buffer allocation prob-
lem. We will first describe the competing optimization schemes and characterize
each test problem. Then we report selected results that emphasize key findings.
In addition to NP+SSM+HC, the optimization approaches that we consider are:

NP. NP is our version of the algorithm, but not using SSM or HC. The al-
gorithm takes 1nfixed observations Yip from xi on the first visit, and 1nfree
additional observations on all other visits. NP selects the best solution over the
set Sk , x̂∗(Sk), as the one with the largest cumulative sample average, and it
uses x̂∗(Sk) to determine the new most-promising region.

Random Search (RS) [Andradóttir 1996]. RS is a modified hill-climbing algo-
rithm. Let Ik ∈ {1, 2, . . . , v} denote the index of the current solution on iteration
k, and Ci(k) denote the number of times xi becomes the current solution up to
iteration k, that is, Ci(k) ≡ ∑k

p=0 I{Ip = i}, where I{ν} = 1 if ν is true and 0
otherwise. RS proceeds as follows:

(1) Initialization. Set k = 0, Ik to the index of a user-provided solution, x0 (If
not given, use MIX-D to randomly sample a solution from 2), and Ci(k) =
I{xi = x0}, ∀i.

(2) Search. Repeat Steps (2)(a)–(2)(c) until the simulation effort is exhausted:
(a) Use MIX-D to uniformly sample a candidate solution xI ′k over 2 \ {Ik},

the entire feasible region except for solution I ′k.
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(b) Take1nfixed > 0 observations of YIk p and YI ′k p, and compute the sample
averages over these observations: Ȳ I ′k (1nfixed) and Ȳ Ik (1nfixed).

(c) Update Ik and Ci(k):

Ik+1 =
{

I ′k, if Ȳ I ′k (1nfixed) > Ȳ Ik (1nfixed)

Ik , otherwise
(22)

Ci(k + 1) = Ci(k)+ I{Ik+1 = i}
k = k + 1.

(3) Estimating the Optimal Solution. The selected solution is xî∗ where

î∗ = arg max
1≤i≤v

Ci(k). (23)

Simulated Annealing (SA) [Alrefaei and Andradóttir 1999]. SA is almost
identical to RS, but occasional downhill moves are allowed. Let the neighbor-
hood structure be such that every solution is a neighbor of every other solution.
The annealing temperature T is fixed. Equation (22) is replaced by

Ik+1 ←
{

I ′k, if Uk ≤ exp
{−1Y +k /T

}
Ik , otherwise.

(24)

where 1Y +k = max[Ȳ Ik (1nfixed)− Ȳ I ′k (1nfixed), 0], and Uk ∼ Uniform(0, 1). The
selected solution is xî∗ where

î∗ = arg max
1≤i≤v
{Ȳi(ni(k)) : ni(k) > 0}. (25)

Remark 4.1. The past visit counts or observations are accumulated in RS
and SA, respectively, for the purpose of estimating the optimal solution upon
search termination (in (23) and (25)), but they are not used for the local com-
parison (in (22) or (24)).

We consider RS, SA and NP because they are globally convergent in our
problem setting. We compare NP+SSM+HC to NP to study the role of selection-
of-the-best schemes and HC. Each optimization scheme is given the same com-
putational budget (the number of replications). Each algorithm is repeated for
some number of times, and the results shown below are the averaged values
across different searches.

Settings for the parameters of each of these search procedures (see Table II)
were obtained by experimenting with a number of combinations of settings,
and using ones that appear to yield good search performance. However, we did
not formally conduct experiments to assess the optimal combination of these
parameters for each procedure (Appendix C briefly explains how we obtain the
annealing temperature T ).

4.1 (s, S) Inventory Problem

In this classic problem [Koenig and Law 1985], the level of inventory of some
discrete unit is periodically reviewed. Let s ≡ x1 and S ≡ x2. If the inventory
position (units in inventory plus units on order minus units backordered) at a
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Table II. Parameters used in the numerical experiments

Three-stage buffer
Parameter (s, S) inventory problem allocation problem

Number of searches 1000 50

Superregion of Rk
(

s(Rk)
)

2, ∀k 2, ∀k
Partitioning criterion BIGGEST RANGE BIGGEST RANGE

Number of subregions
partitioned per Rk (ω) 2 2

Number of iterations without
progress that triggers restart (k0) 10 6

Number of solutions sampled
from each subregion (ϑ) 3 5

Warm-up length
of MIX-D and MIX-DS 10 10
(length of Markov tour)

Minimum Number of
observations taken from 2 1

a sampled solution
(
1nfree

)
Number of

observations for NP
(
1nfixed

)
10 4

Indifference-zone
parameter for SSM (δ) 1 0.5

First-stage number of
observations for SSM (n0) 10 4

Confidence level for SSM, 1− α 0.9 0.9

Annealing temperature T 5 3

Initial solution (70, 90) (2, 2, 2, 2, 18)

review is found to be below x1 units, then an order is placed to bring the inven-
tory position up to x2 units; otherwise, no order is placed. Demand is Poisson
with mean rate of 25. The goal is to select xi, i = 1, 2, such that the steady-state
expected inventory cost per review period is minimized. The constraints on x1
and x2 are x1 − x2 ≤ 0, 20 ≤ x1 ≤ 80, 40 ≤ x2 ≤ 100, and x1, x2 ∈ Z+.

The number of feasible solutions is 2,901. The optimal inventory policy is (20,
53) with expected cost/period of 111.1265. The steady-state expected cost/period
over the ranges of x1 and x2 considered (i.e., the response surface) is shown in
Figure 4. To reduce the initial-condition bias, the average cost per period is
computed after the first 100 review periods and averaged over the subsequent
30 periods. Other parameter settings are shown in Table II.

In this problem, the version of the NP+SSM+HC algorithm that we consider
is NP+SSM(REGION), which is our algorithm without HC (skip Step (2)(d) of
NP+SSM+HC algorithm and carry xî∗k

= x̂∗(Sk) in to Step (2)(e). We do this to
isolate the benefit of SSM. Figure 5 shows the steady-state expected average
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Fig. 4. Steady-state expected cost/period of the (s, S) inventory problem.

Fig. 5. Steady-state expected cost/period of the current optimal-solution estimates µî∗ at each
point in time for the (s, S) inventory problem.

cost per period of the current optimal-solution estimates µî∗ (depending on the
algorithm, î∗ is defined in (4), (23), or (25)) at each point in time averaged over
1000 searches. Initially, the performance of NP is better than other optimiza-
tion methods. However, as the simulation effort (i.e., the number of simula-
tion replications) increases, NP+SSM(REGION) outperforms the rest despite the
small number of solutions seen by NP+SSM(REGION) relative to other optimiza-
tion algorithms (see Figure 6). This illustrates the dilemma of selection versus
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Fig. 6. Percentage of solutions seen by the optimization schemes when applied to the (s, S) inven-
tory problem.

exploration. When the available simulation effort is small, NP+SSM(REGION) is
unable to see much of2 because it exhausts more simulation effort per search it-
eration than NP does (recall that NP+SSM(REGION) uses SSM(REGION) on every
iteration, whereas NP does not use SSM at all). However, as the optimization
progresses, the benefit of successively making good selections on every itera-
tion finally pays off, and the performance of NP+SSM(REGION) surpasses that
of other optimization schemes.

4.2 Three-Stage Buffer Allocation Problem

We consider a three-stage flow line with finite buffer storage space in front of
stations 2 and 3 (denoted by x4 and x5, respectively) and an infinite number of
jobs in front of station 1. There is a single server at each station, and the service
time at station h is exponentially distributed with service rate xh, h = 1, 2, 3.
If the buffer of station h is full, then station h− 1 is blocked and a finished job
cannot be released from station h−1. The total buffer space and the service rates
are limited. The goal is to find a buffer allocation and service rates such that
the throughput (average output of the flow line per unit time) is maximized. We
obtained the balance equations for the underlying Markov chain from Buzacott
and Shantikumar [1993]. The constraints (in the form of (2)) are: x1+ x2+ x3 ≤
20; x4 + x5 ≤ 20;−x4 − x5 ≤ −20; 1 ≤ xh ≤ 20, h = 1, 2, . . . , 5; xh ∈ Z+.

The number of feasible solutions is 21,660. The optimal solutions are (6, 7, 7,
12, 8) and (7, 7, 6, 8, 12) with an expected throughput of 5.776. In the simulation,
the throughput is estimated after the first 2000 units have been produced, and
it is averaged over the subsequent 50 units released. When HC is used, it is
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Fig. 7. Expected throughput of the current optimal-solution estimate at each point in time for the
buffer allocation problem.

Table III. Fraction of the total number of solution that the
optimization scheme has seen when the search terminates

Algorithm % of number of solution seen
NP+SSM(REGION)+HC 1.64

NP+SSM+HC 1.41
NP+SSM(REGION) 1.80

RS 2.85
SA 2.84

performed on all iterations; HC stops when |Ȳî∗t (nî∗t ) − Ȳî∗t−1
(nî∗t−1

)| < δ where
xî∗t is the current best solution on HC iteration t, and δ is an indifference-zone
parameter for SSM (i.e., the amount that a user cares to distinguish between
solutions; see (15)); the number of candidate solutions on each HC step is 3, and
the neighborhood step size is 1. Other parameter values are shown in Table II.
To isolate the impact of SSM, we also consider an NP+HC search where the
best solution from the NP method is the starting solution for the HC search
(see Section 2.4). The HC parameters we use in NP+HC are identical to what
we use for NP+SSM+HC searches.

Figure 7 shows the expected throughput of the current optimal-solution esti-
mate µî∗ averaged over 50 searches at each point in time. Initially, the NP+HC
search performs well because this test problem has low variability, large feasible
space (see Table III for the fraction of the total number of solutions that an opti-
mization scheme has visited when the search terminates) and relatively regu-
lar response surface. Such characteristics are advantageous for an optimization
scheme such as NP+HC, which visits many solutions quickly and does not spend
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much time on estimating the performance measure. Nevertheless, the ability
to correctly select good solutions eventually matters; Figure 7 shows that as
the simulation effort increases, NP+SSM(REGION)+HC and NP+SSM+HC out-
perform the rest.

The benefit of HC is manifested through the favorable performance of
NP+SSM(REGION)+HC compared to that of NP+SSM(REGION). This result con-
firms our conjecture that HC is advantageous for problems with large |2| and
clustered good solutions; this three-stage buffer allocation problem has |2| =
21, 660 with 5 decision variables, and good solutions are in close proximity.

Next, we examine the value of option REGION. NP+SSM(REGION)+HC no-
ticeably outperforms NP+SSM+HC in the initial phase of the search. Option
REGION is helpful when the simulation budget is limited because SSM(REGION)
consumes less simulation effort per search iteration than SSM does (recall
that SSM(REGION) stops when all surviving solutions belong to the same sub-
region); therefore, NP+SSM(REGION)+HC is able to see more solutions than
NP+SSM+HC does, and thus NP+SSM(REGION)+HC is more likely to find good
solutions given limited simulation effort.

In addition to the two test problems above, we have also experimented
with a known response function with added white noise whose variance is in-
versely proportional to the value of function (see the Zimmermann’s function
section in the Online Appendix). This example allows us to examine the perfor-
mance of the algorithms when there is significant variability near the optimal
solution.

Unlike the previous two problems, NP+SSM and NP+SSM(REGION)+HC out-
perform all other optimization schemes at all levels of simulation effort. This
result illustrates the significance of correct selection on the performance of
the optimization schemes when variability is high. Although the underlying
response surface is smooth and monotonic, this problem is difficult because the
noise is not only large, but it also becomes larger in the vicinity of the opti-
mal solution. For such problems, it is critical to make a good selection on every
iteration.

5. CONCLUSION

We have proposed an optimization-via-simulation algorithm with the goal
of establishing both provable convergence and good empirical performance.
NP+SSM+HC consists of a global guidance system, selection of the best, and
local improvement. We use the NP method as our global guidance system to
ensure that the search not only advances toward optimal solutions, but it also
reaches one of them, if there is enough simulation effort. While the NP method
gives us the convergence guarantee, SSM enhances the performance of the NP
method by controlling the selection error, and HC improves it further by inten-
sifying the search near good solutions. This is critical because the convergence
guarantee comes only as each feasible solution is visited infinitely often, while
in practice some solutions may not be visited at all if the feasible space is large.
Notice that we see good performance in our examples even though only a small
fraction of solutions are simulated.
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Table IV. Notation for k0 calculation.

Notation Definition

p0 probability of encountering solutions better than xi0

≡
∣∣{xi :µi≥µi0 }

∣∣
v−1 , where |A| denotes the cardinality of a set A

H0 null hypothesis: p0 ≥ β
v number of feasible solutions in 2
ϑ number of sampled solutions per subregion
i0 index of the current best solution
β threshold probability of restarting
k0 threshold number of iterations to restart
α Type-I error in rejecting H0 when it is true

The motivation behind NP+SSM+HC is to make optimization-via-simulation
algorithms adapt to variability and to characteristics of the response surface.
Our algorithms show promise in numerical tests (see also the extensive study
in Pichitlamken [2002]). Still, there is substantial room to be even more adap-
tive. A key contribution of our approach is that it provides a flexible framework
within which many sensible schemes can be embedded without sacrificing prov-
able performance. For example, in the selection of the best, SSM can be replaced
by an extension of Rinott’s procedure in Boesel et al. [2003b]; in the local search,
the hill-climbing algorithm can be augmented by tabu search, simulated an-
nealing or a genetic algorithm.

NP+SSM+HC was designed for problems with integer-valued decision vari-
ables, and it will work best in that environment. Continuous-valued decision
variables can, of course, be discretized, so NP+SSM+HC could be adapted to
continuous-decision-variable problems in that (perhaps very inefficient) way.
If the convergence guarantee is sacrificed, then NP+SSM+HC will work di-
rectly with continuous-valued decision variables by replacing MIX-D and MIX-
DS with one of the many algorithms for sampling from a continuous feasible
region.

APPENDIXES

A. DETERMINING THE RESTARTING THRESHOLD

We consider restarting NP+SSM+HC when the current most promising region
has been the same singleton for k0 iterations. We restart when the estimated
probability of encountering solutions better than the current best solution, say
xi0 , is low. The notation is defined in Table IV.

If the null hypothesis H0 is not rejected, the search continues with the cur-
rent branching scheme. On the other hand, if H0 is rejected, then the search
restarts. The test is based on the number of consecutive iterations on which
we do not find a solution better than xi0 . To control Type-I error, we determine
a threshold number of consecutive NP iterations, k0, in which xi0 remains the
most promising. The threshold k0 can be considered as the number of Bernoulli
trials without success in rejecting H0, where the probability of success is β.
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Therefore, we have that

α ≥ max
β≤p0≤1

Pr {number of consecutive iterations without restart = k0 |H0

is true}
= max

β≤p0≤1
(1− p0)ϑk0

≥ (1− β)ϑk0

Thus, k0 = (lnα)/(ϑ ln(1 − β)). We use α = 0.04 and β = 0.1 in the numer-
ical experiments (Section 4). Notice that the analysis above is based on two
approximations:

(1) Sampling is independent and uniform with replacement, and p0 does not
change: However, we actually sample without replacements, that is, we
obtain distinct solutions. Nevertheless, this discrepancy is insignificant if
the size of2 is large relative to number of solutions we sample. In addition,
the asymptotic uniformity of MIX-D and MIX-DS also helps alleviate the
difference.

(2) If a solution that is better than xi0 exists in the pool of sampled solutions,
then it is selected. Of course, there will sometimes be selection error, but
this error is controlled by SSM.

The restarting threshold k0 could also be used as a stopping criterion for
NP+SSM+HC, that is, the search terminates if some singleton region remains
the most promising for k0 consecutive iterations.

B. ALGORITHM MIX-DS

We use MIX-DS to sample solutions from the surrounding region 2 \ Rk .
To make the notation more compact, we can express the constraints (5) in

vector form. First, we index the constraints, other than integrality, as follows:
q∑

i=1

ãτi j xi ≤ b̃τj , j = 1, 2, . . . , pτ + 2q

where

ãτi j =


aτi j , j = 1, 2, . . . , pτ

−I{i = ( j − pτ )}, j = pτ + 1, pτ + 2, . . . , pτ + q
I{i = ( j − pτ − q)}, j = pτ + q + 1, pτ + q + 2, . . . , pτ + 2q

and

b̃τj =


bτj , j = 1, 2, . . . , pτ

−l τj−pτ , j = pτ + 1, pτ + 2, . . . , pτ + q
uτj−pτ−q , j = pτ + q + 1, pτ + q + 2, . . . , pτ + 2q.

The indicator function I{ε} is one if ε is true and zero if ε is false. Then, excluding
integrality, constraint (5) becomes

ãτj x ≤ b̃τj , j = 1, 2, . . . , pτ + 2q, (26)

where ãτj is a row vector: (ãτ1 j , ãτ2 j , . . . , ãτq j ).
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Algorithm MIX-DS
Input: A closed convex region τ of the form (5) which is a proper subset of another
closed convex region2 of the form (2), number of solutions to sample ϑ , length of warm-
up period T , and a starting solution x0 6∈ τ but x0 ∈ 2.
Output: ϑ random integer solutions that are in 2 \ τ .
Procedure:

(1) Initialization. Set X0 = x0, t = 1, and the set of sampled solution S = ∅.
(2) Generating Random Solutions.

(a) Sample a random scaled direction Dt (see Step (2)(a) of MIX-D for details).
(b) Determine the set of possible integer increments within 2, C(Xt−1, Dt ,2) (see

Step (2)(b) of MIX-D).
(c) Divide the constraints of τ (see (26)) into two sets: those which Xt−1 has satisfied

(denoted as I y
t (τ )) and those which Xt−1 has not satisfied (denoted as In

t (τ )):

I y
t (τ ) = { j : ãτj Xt−1 ≤ b̃τj , 1 ≤ j ≤ pτ + 2q

}
(27)

In
t (τ ) = { j : ãτj Xt−1 > b̃τj , 1 ≤ j ≤ pτ + 2q

}
(28)

= {1, 2, . . . , pτ + 2q
} \ I y

t (τ ).

(d) Determine if a move in direction Dt passes through τ :
(i) Compute the minimum increment Ct(τ ) that brings the tour from Xt−1 into

τ if it is possible at all in the direction Dt , that is, Ct(τ ) ≥ 0 such that
(Xt−1 + (Ct(τ )− 1) ·Dt) 6∈ τ , but (Xt−1 +Ct(τ ) ·Dt) ∈ τ . The increment Ct(τ )
is determined by:

C j t(τ ) =
{ ⌈

b̃τj−ãτj Xt−1

ãτj Dt

⌉
, if ãτj Dt < 0

∞, otherwise
(29)

Ct(τ ) = max
j∈In

t (τ )
C j t(τ ). (30)

If Ct(τ ) = ∞, then a move in direction Dt will definitely not pass through τ ;
go to Step (2)(d)(iv). However, if Ct(τ ) < ∞, it is possible that Dt will pass
through τ in positive multiples of Dt .

(ii) Compute the maximum increment C̄t(τ ) that brings the random tour from
Xt−1 into τ but not out of τ if it is possible at all in direction Dt , that is,
C̄t(τ ) ≥ 0 such that (Xt−1 + C̄t(τ ) ·Dt) ∈ τ , but (Xt−1 + (C̄t(τ ) + 1) ·Dt) 6∈ τ .
The increment C̄t(τ ) is determined by:

C̄ j t(τ ) =
{ ⌊

b̃τj−ãτj Xt−1

ãτj Dt

⌋
, if ãτj Dt > 0

∞, otherwise
(31)

C̄t(τ ) = min
j∈I y

t (τ )
C̄ j t(τ ). (32)

(iii) If Ct(τ ) > C̄t(τ ), a move in positive multiples of Dt cannot bring the random
tour into the inner region τ , go to Step (2)(d)(iv). On the other hand, for
C ∈ [ Ct(τ ), C̄t(τ )], we have that (Xt−1 + CDt) ∈ τ . Thus, the set of possible
increments that keep the tour outside τ while remaining inside 2 is

C(Xt−1, Dt ,2) ← C(Xt−1, Dt ,2) \ [ Ct(τ ), C̄t(τ )]. (33)

If C(Xt−1, Dt ,2) = ∅, go to Step (2)(a); otherwise, go to Step (2)(e).
(iv) Check if negative increments can bring the random tour into the region τ :

(A) Reverse the direction Dt to get −Dt , that is, −Dit = (−1) · Dit for
i = 1, 2, . . . , q.

(B) Substitute −Dt for Dt , and use Eqs. (29) and (30) to get C̄t(τ ). Suppose
C is the result of Eqs. (29) and (30), then C̄t(τ )← (−1)·C. If C̄t(τ ) = −∞,
then go to Step (2)(e).
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(C) Compute Ct(τ ) with −Dt being substituted for Dt in Eqs. (31) and (32),
and then reverse the sign of the result, that is, let C be the result of
Eqs. (31) and (32) with −Dt , then Ct(τ )← (−1) · C.

(D) If Ct(τ ) ≤ C̄t(τ ), then update the set of possible increments with (33).
(e) Sample Ct uniformly over the set C(Xt−1, Dt ,2).
(f) Update Xt and t;

Xt = Xt−1 + CtDt (34)
t = t + 1.

(g) If t < T , go to Step (2)(a); otherwise, insert XT into the set S if XT 6∈ S. If S
has ϑ solutions, return the set S; otherwise, set t = 0 and X0 = XT and go to
Step (2)(a).

Remark B.1. The left-hand sides of Eqs. (29)–(32) are nonnegative.

Notice that Algorithm MIX-DS is essentially Algorithm MIX-D over the fea-
sible space 2, but not all increments Ct are permitted. Similar to MIX-D, the
stochastic process induced by MIX-DS is a stationary and irreducible Markov
chain over a discrete and finite space 2 \ τ . Theorem B.2 below shows that this
Markov chain also has a uniform limiting distribution (see the Online Appendix
for the proof).

THEOREM B.2. The limiting distribution of the Markov chain induced by
MIX-DS {Xt : t ≥ 0} is uniform.

C. DETERMINING THE ANNEALING TEMPERATURE

We determined the annealing temperature T for SA via a mix of calculation
and experimentation. In Eq. (24), we arbitrarily set the threshold acceptance
probability to be 0.7 and set1Y +k to be the indifference-zone parameter δ. Then
we solved for the annealing temperature T as T = −δ/ ln(0.7).We rounded this
number up, and increased it further if it seemed to help in experiments. For
example, for the (s, S) inventory problem, T = −δ/ ln(0.7) ≈ 2.8, but we used
T = 5.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital
Library.
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for her ideas and assistance. We also acknowledge the guidance of the co-Editor
Michael Fu and two referees on revising the presentation of the article.

REFERENCES
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