ปฏิบัติการที่ 8 พลศาสตร์ของโครงสร้างตามมาตรฐาน มยผ. 1301/1302-61 วัตถุประสงค์

ในปฏิบัติการนี้ผู้ใช้จะได้เรียนรู้การสร้างแบบจำลองของแรงกระทำเนื่องจากแผ่นดินไหวตาม มาตรฐานการออกแบบอาคาร ต้านทานการสั่นสะเทือนของแผ่นดินไหว มยผ. 1301/1302-61

- 1. การสร้างกราฟแสดงความเร่งตอบสนองเชิงสเปกตรัม สำหรับการออกแบบ
- 2. การนำกราฟความเร่งตอบสนองไปใช้งานยังโปรแกรม Robot Structural Analysis

การสร้างกราฟความเร่งตอบสนอง

ความรุนแรงของแผ่นดินไหวที่กระทำต่ออาคารแต่ละอาคาร มีพฤติกรรมการตอบสนองที่แตกต่างกัน โดยมีตัว แปรคือ คาบการสั่นของอาคาร ค่าความหน่วงของอาคาร ความเร่งในตอบสนองนี้สามารถแสดงอยู่ในรูปของ กราฟแสดง ความเร่งตอบสนองเชิงสเปกตรัม ในการวิเคราะห์ความเร่งตอบสนองของอาคารในประเทศไทย ถูกแบ่งออกเป็น 2 กลุ่ม ตามที่ตั้งด้วยกันคือ 1) พื้นที่ทั่วประเทศยกแว้นแอ่งกรุงเทพ และ 2) พื้นที่แอ่งกรุงเทพ ซึ่งขั้นตอนในการสร้าง กราฟแสดง ความเร่งตอบสนองเชิงสเปกตรัม มีขั้นตอนดังต่อไปนี้ (กรมโธาธิการและผังเมือง, 2016)

- 1. พื้นที่ทั่วประเทศยกแว้นแอ่งกรุงเทพ
 - 1.1. กำหนดพื้นที่ตั้ง
 - จาก ตารางที่ 1.4-1 ค่าความเร่งตอบสนองเชิงสเปกตรัม ที่คาบสั้น 0.2 วินาที (S_s) และ ที่คาบ 1 วินาที (S₁) ของ แผ่นดินไหวรุนแรงสูงสุดที่พิจารณา อ่านค่า S_sและ S₁
 - 1.3. ปรับแก้ ความเร่งตอบสนองจากข้อมูลประเภทของชั้นดิน ณ ที่ตั้งอาคาร
 - 1.4. การปรับแก้ค่าความเร่งตอบสนองเชิงสเปกตรัม ค่าความเร่งตอบสนองเชิงสเปกตรัมของแผ่นดินไหวรุนแรงสูงสุด ที่พิจารณา ณ บริเวณที่ตั้งของอาคาร สามารถปรับแก้ค่าให้เหมาะสมกับประเภทของชั้นดิน ณ ที่ตั้งอาคาร ได้ด้วย สมการดังต่อไปนี้

$$S_{M1} = F_v S_{1}$$
ເຄຍ $S_{MS} = F_a S_s$

โดยที่

- S _{MS} คือ ค่าความเร่งตอบสนองเชิงสเปกตรัมที่คาบการสั่น 0.2 วินาทีที่ถูกปรับแก้เนื่องจากผลของชั้น ดิน ณ ที่ตั้งอาคาร
- S M1 คือ ค่าความเร่งตอบสนองเชิงสเปกตรัมที่คาบการสั่น 1.0 วินาทีที่ถูกปรับแก้เนื่องจากผลของชั้น ดิน ณ ที่ตั้งอาคาร
- Fa คือ สัมประสิทธิ์สำหรับชั้นดิน ณ ที่ตั้งอาคาร สำหรับคาบการสั่น 0.2 วินาที
- Fv คือ สัมประสิทธิ์สำหรับชั้นดิน ณ ที่ตั้งอาคาร สำหรับคาบการสั่น 1 วินาที
- 1.5. การปรับค่าความเร่งตอบสนองเชิงสเปกตรัมสำหรับการออกแบบ ค่าความเร่งตอบสนองเชิงสเปกตรัมสำหรับการ
 ออกแบบที่คาบการสั่น 0.2 วินาที (SDS) และที่คาบการสั่น 1 วินาที (SD1) คำนวณจากสมการ

$$S_{DS} = \frac{2}{3} S_{MS}_{MS} S_{D1} = \frac{2}{3} S_{M1}$$

1.6. สร้างกราฟการตอบ

ภาพที่ 217 ความเร่งตอบสนองเชิงสเปกตรัมสำหรับการออกแบบด้วยวิธีแรงสถิตเทียบเท่า สำหรับพื้นที่ทั่ว ประเทศ (ยกเว้นแอ่งกรุงเทพ)

ภาพที่ 218 ความเร่งตอบสนองเชิงสเปกตรัมสำหรับการออกแบบด้วยวิธีเชิงพลศาสตร์ สำหรับพื้นที่ทั่วประเทศ (ยกเว้นแอ่งกรุงเทพ)

150

สำหรับพื้นที่ในแอ่งกรุงเทพนั้นถูกกำหนดออกเป็น 10 โซนด้วยกันดังต่อไปนี้

โซน 1	โซน 3	โซน 6	โซน 9
จังหวัดเพชรบุรี	จังหวัดสมุทรสาคร	จังหวัดพระนครศรีอยุธยา	จังหวัดนครนายก
- อ.เขาย้อย	(ทั้งจังหวัด)	- อ.ลาดบัวหลวง	- อ.องครักษ์
จังหวัดราชบุรี	จังหวัดสมุทรสงคราม	- อ.บางไทร	จังหวัดปราจีนบุรี
- อ.ปากท่อ	(ทั้งจังหวัด)	- อ.บางปะอิน	- อ.บ้านสร้าง
- อ.วัดเพลง	Torre d	- อ.วังน้อย	จังหวัดฉะเชิงเทรา
- อ.เมืองราชบุรี	เซน 4	- อ.เสนา	- อ.บางน้ำเปรี้ยว
Ĩen. O	งงหวดนนทบุร (นั้นรับแล้ว)	- อ.อุทัย	- อ.บางคล้า
เขน 2	(N4444,161)	- อ.ท่าเรือ	- อ.ราชสาสน์
งงหวดราชบุร	โซน 5	- อ.บางบาล	- อ.คลองเชื่อน
- อ.ดาเนนสะดวก	จังหวัดกรุงเทพมหานคร	- อ.เมืองพระนครศรีอยุชยา	- อ.บ้านโพซิ์
-อ.บางแพ	(ทั้งจังหวัด)		- อ.บางปะกง
จงหวดนครปฐม	จังหวัดสมุทรปราการ	เซน 7	- อ.เมืองฉะเชิงเทรา
- อ.สามพราน - อ.พทธบณฑล	(ทั้งจังหวัด)	จงหวดปทุมธานี (ทั้งจังหวัด)	โซน 10
- อ.นครชัยศรี		* *	จังหวัดขลบุรี
- อ.ดอนตูม		เช่น 8	- อ.พานทอง
- อ.บางเล่น		จงหวดนครนายก	- อ.เมืองขลบุรี
- อ.เมืองนครปฐม		- อ.บานนา - อ.ปากพลี	
		- อ.เมืองนครนายก	
ที่ 1.4-5 การแบ่งโ	โซนพื้นที่ในแอ่งกรุงเทพ	ฯ เพื่อการออกแบบอา	คารต้านทานแผ่นดินไหว

ภาพที่ 219 การแบ่งโซนพื้นที่ ในแอ่งกรุงเทพ เพื่อการออกแบบต้านแผ่นดินไหว

โดยค่า Sa สามารถหาได้จากข้อมูลในตารางที่ 1.4-4 และ 1.4-5 ใน มาตรฐานการออกแบบอาคารต้านทานการสั่นสะเทือน ของแผ่นดินไหว มยผ. 1301/1302-61ตามลำดับ

S _a	S_a	S_{DS}	S_a	S_{D1}	Sa	Sa	S_a	S _a	Sa
โซน	(0.01s)	(0.2 s)	(0.5 s)	(1.0s)	(2.0 s)	(3.0 s)	(4.0 s)	(5.0 s)	(6.0 s)
1	0.451	0.451	0.451	0.233	0.110	0.053	0.042	0.031	0.029
2	0.439	0.439	0.439	0.249	0.196	0.108	0.058	0.038	0.030
3	0.320	0.320	0.320	0.353	0.217	0.109	0.064	0.044	0.034
4	0.330	0.330	0.330	0.264	0.218	0.100	0.039	0.029	0.027
5	0.220	0.220	0.220	0.250	0.223	0.126	0.067	0.047	0.038
6	0.340	0.340	0.340	0.198	0.207	0.093	0.053	0.040	0.035
7	0.291	0.291	0.291	0.231	0.177	0.103	0.064	0.046	0.040
8	0.210	0.210	0.210	0.097	0.055	0.033	0.018	0.012	0.011
9	0.269	0.269	0.269	0.194	0.144	0.061	0.026	0.017	0.013
10	0.225	0.225	0.225	0.059	0.047	0.031	0.017	0.012	0.010

ตารางที่ 1.4-4 ค่าความเร่งตอบสนองเชิงสเปกตรัมสำหรับการออกแบบ ด้วยวิธีแรงสถิตเทียบเท่าสำหรับ พื้นที่ในโซนต่าง ๆ (อัตราส่วนความหน่วง 2.5%) ของพื้นที่ในแอ่งกรุงเทพ

ตารางที่ 1.4-5	; ค่าความเร่งตอบสนองเชิงสเปกตรัมสำหรับการออกแบบ ด้วยวิธีแรงสถิ	ัตเทียบเท่าสำหรั บ
	พื้นที่ในโซนต่าง ๆ (อัตราส่วนความหน่วง 5.0%) ของพื้นที่ในแอ่งกรุงเท	W

Sa	S_a	S_{DS}	Sa	S_{D1}	Sa	S_a	S_a	S_a	S_a
โซน	(0.01s)	(0.2 s)	(0.5 s)	(1.0s)	(2.0 s)	(3.0 s)	(4.0 s)	(5.0 s)	(6.0 s)
1	0.360	0.360	0.360	0.181	0.085	0.041	0.034	0.024	0.022
2	0.352	0.352	0.352	0.193	0.151	0.084	0.047	0.030	0.024
3	0.262	0.262	0.262	0.265	0.166	0.085	0.052	0.035	0.026
4	0.287	0.287	0.287	0.207	0.163	0.078	0.032	0.023	0.020
5	0.191	0.191	0.191	0.199	0.168	0.094	0.053	0.037	0.028
6	0.272	0.272	0.272	0.154	0.150	0.077	0.042	0.031	0.026
7	0.246	0.246	0.246	0.181	0.132	0.084	0.051	0.036	0.030
8	0.162	0.162	0.162	0.075	0.041	0.025	0.015	0.010	800.0
9	0.214	0.214	0.214	0.156	0.107	0.048	0.022	0.014	0.011
10	0.179	0.179	0.179	0.049	0.035	0.023	0.014	0.010	800.0

การนำกราฟความเร่งตอบสนองไปใช้งานยังโปรแกรม Robot Structural Analysis

การนำกราฟความเร่งตอบสนองไปใช้ในโปรแกรม Robot Structural Analysis มีขั้นตอนดังต่อไปนี้

R Modal Ana	Ilysis Parameters			×
Case: Parameters Number of modes	Modal		Analysis mode Modal Seismic Seismic	Tolerance:
Number of iterati	0.0001 ions: 40 9.80665		Method O Block subspace iteration	Parameters definition
Mass matrix Consistent Lumped with r	rotations ut rotations		Subspace iteration Block Lanczos algorithm Lanczos algorithm Base reduction	Base definition
Active mass dire	ections V [z	Limits Inactive Period, frequency, pulsation Percent of mass participation	Limit definition
Disregard der Sturm check Simp	nsity Dified parameters <<	;	Seismic analysis parameters Damping: 0.05 Include damping in calculations	according to PS92)
OK	Cancel	Help		Definition of eccentricities

1. สร้าง modal case ในการสร้าง Analysis Type

ภาพที่ 220 การกำหนดตัวเลือกการวิเคราะห์ Modal ของโครงสร้าง

- การกำหนด จำนวน Modes สามารถกำหนดได้จาก Field Number of Modes (ซึ่งภายหลังการวิเคราะห์ผู้ใช้อาจ ต้องทำการกำหนด จำนวน mode ใหม่ ในภายหลังอีกครั้ง)
 - a. Mass เมทริกซ์ กำหนดค่าเป็น Lumped without Rotation
 - b. Active mass direction กำหนดเป็น ค่า x และ z
- 3. สร้างกรณีการวิเคราะห์ใหม่ โดยเพิ่มการวิเคราะห์ Spectral
- 4. ทำการกำหนดตัวเลือก Spectral โดยใช้ปุ่ม Parameter
- 5. ป้อนข้อมูลของค่า Spectral ที่ได้จากขั้นตอน ของ มยผ. 1301/1302-61 โดยกดไปที่ปุ่ม <u>Spectrum Definition</u> โดยกำหนดให้ค่าของแกน x เป็น คาบ และ ค่าแกน y เป็นความเร่ง

Spectrum Points Spectra Interpolation Defined spectra BMA Zone 1 Abscissa (X-axis) Damping: .005 (-) Add Delete Modify No. Name Pulsation I BMA Zone 1 Ordinate (Y-axis) Logarithmic scale Velocity Velocity Image: Acceleration Save Open

ภาพที่ 221 การสร้าง Spectra

 ไปยัง Tap Points เพื่อกำหนดค่า Spectral โดยกำหนดค่า (x,y) ที่สัมพันธ์กัน (ค่าตัวอย่างที่ใช้เป็นกรณี พื้นที่ใน แอ่งกรุงเทพ โซนที่ 1 การออกแบบด้วยแรงสถิตเทียบเท่า)

ภาพที่ 222 การป้อนข้อมูล Spectra