บทที่ 12

การวิเคราะห์การถดถอยแบบไม่เป็นเส้นตรง

1. สมการการถดถอยแบบไม่เป็นเส้นตรง

ในบทก่อนเราอธิบายการวิเคราะห์การถดถอยที่ตัวแบบการถดถอยเป็นสมการแบบ เส้นตรง สำหรับในบทนี้จะอธิบายการวิเคราะห์การถดถอยที่ตัวแบบการถดถอยเป็นสมการแบบ ไม่เป็นเส้นตรง ตัวอย่างสมการถดถอยที่ไม่เป็นเส้นตรง ได้แก่

สมการถคถอยแบบควอคราทิก คือ $E(Y) = \beta_0 + \beta_1 X + \beta_2 X^2$ สมการถคถอยแบบคิวบิก คือ $E(Y) = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3$ สมการถคถอยแบบเอกซ์โพเนนเชียล คือ $E(Y) = \beta_0 \beta_1^X$

เราจะหาตัวแบบการถดถอยที่เป็นสมการแบบไม่เป็นเส้นตรง เมื่อพบว่าสมการแบบ เส้นตรงไม่เหมาะสมกับข้อมูล แต่การประมาณค่าพารามิเตอร์ของตัวแบบการถดถอยก็ยุ่งยากขึ้น ด้วย ดังนั้นในกรณีที่สมการถดถอยแบบเส้นตรงไม่เหมาะสมกับข้อมูลเราสามารถทำได้ 2 วิธีการคือ

1. การแปลงข้อมูล (transformation) ซึ่งจะทำให้สมการถคลอยแบบเส้นตรง เหมาะสมกับข้อมูลที่แปลงแล้ว

2. การหาตัวแบบสถิติตัวแบบใหม่ที่ไม่ใช่สมการเส้นตรงซึ่งเหมาะสมกับข้อมูลนั้น

2. การแปลงข้อมูล

การแปลงข้อมูลบางครั้งจะทำกับตัวแปรตาม Y เท่านั้น บางครั้งทำกับตัวแปรอิสระ X เท่านั้น หรืออาจทำกับทั้งตัวแปรตามและตัวแปรอิสระ เช่น

1.
$$Y' = \sqrt{Y}$$
, $X' = \sqrt{X}$
2. $Y' = \log_{10}$, $X' = \log_{10} X$
3. $Y' = \frac{1}{Y}$, $X' = \frac{1}{X}$

การเลือกใช้การแปลงข้อมูลชนิคใค ระหว่างการทรานส์ฟอร์มแบบต่าง ๆ สามารถทำได้โดยการพล็อตกราฟเปรียบเทียบ

ข้อสังเกต

 การเลือกว่าจะใช้วิธีการแปลงข้อมูลแบบใดอาจมาจากแนวกิด ทฤษฎี ตัวอย่างเช่น การศึกษาความสัมพันธ์ระหว่างราคาสินค้า (X) และปริมาณความต้องการ (Y) ถ้าพล็อตกราฟ ของข้อมูลได้ ดังภาพ

ภาพที่ 12.1 การแปลงข้อมูลสำหรับลักษณะของโค้งที่แตกต่างกัน

นักเศรษฐศาสตร์อาจชอบการแปลงข้อมูลทั้ง Y และ X ด้วยการใส่ log เพื่อให้ได้เส้นตรง เพราะว่ากวามชันของเส้นถดถอยของตัวแปรที่ทรานส์ฟอร์มแล้วเป็นการวัด รากาที่ยืดหยุ่นของกวามด้องการ (the price elasticity of demand) เราจะแปล ความหมายของความชั้นเป็นการแสดงอัตราการเปลี่ยนแปลงเป็นเปอร์เซนต์ของปริมาณความ ต้องการต่ออัตราการเปลี่ยนแปลงของราคา 1 เปอร์เซ็นต์ ซึ่งเป็นในทิศทางตรงกันข้าม

 การแปลงข้อมูลของ X ไม่มีผลกระทบต่อความแปรปรวนหรือรูปร่างของการแจกแจง ของความคลาดเคลื่อนซึ่งต่างจากการแปลงข้อมูลของ Y ดังนั้น เมื่อมีปัญหาเกี่ยวกับการ แจกแจงของความคลาดเคลื่อนที่ไม่เป็นปกติหรือความแปรปรวนของความคลาดเคลื่อนไม่เท่ากัน เราจึงแก้ไขปัญหานี้ได้โดยการแปลงข้อมูลของตัวแปรตาม และในทางกลับกันเมื่อสมการถดถอย ที่ไม่ใช่เส้นตรงแต่มีความแปรปรวนเท่ากัน การแปลงข้อมูลของ Y อาจทำให้ความ กลาดเคลื่อนมีความแปรปรวนไม่เท่ากัน ดังนั้นจึงเป็นสิ่งจำเป็นที่จะต้องตรวจสอบกราฟของ ความคลาดเคลื่อนภายหลังการแปลงข้อมูล

 การพิจารณาเลือกตัวแปรที่จะแปลงข้อมูล ควรเลือกตัวแปรที่มีค่ากว้างกว่าเป็นอันดับ แรก เนื่องจากการแปลงข้อมูลของตัวแปรที่มีค่าแคบ ๆ ไม่ค่อยมีประสิทธิภาพ

 ภายหลังการทดลองเลือกการแปลงข้อมูลต้องทำการพล็อตกราฟของความคลาดเคลื่อน และทำการวิเคราะห์การถดถอยเพื่อให้แน่ใจว่า ตัวแบบสถิติการถดถอยเชิงเส้นเหมาะสมกับ ข้อมูลที่แปลงแล้ว

 รี. เมื่อความแปรปรวนของความคลาดเคลื่อนไม่เท่ากับค่าคงที่แต่มีความสัมพันธ์เป็นพิเศษ กับ E(Y) สำหรับ X ที่กำหนดให้ สามารถใช้การแปลงข้อมูลเพื่อทำให้ความแปรปรวน สม่ำเสมอได้ มีกรณีที่สำคัญ 3 กรณี คือ

 1. ถ้า σ_j^2 เป็นสัดส่วนกับ $E(Y_j)$ ใช้ $Y' = \sqrt{Y}$

 2. ถ้า σ_j เป็นสัดส่วนกับ $E(Y_j)$ ใช้ $Y' = \log Y$

 3. ถ้า $\sqrt{\sigma_j}$ เป็นสัดส่วนกับ $E(Y_j)$ ใช้ $Y' = \frac{1}{Y}$

 เมื่อ σ_j^2 คือ ความแปรปรวนของความคลาดเคลื่อน

 $E(Y_j)$ คือ ค่าเฉลี่ยของค่าสังเกต เมื่อ $X = X_j$

3. ตัวอย่างการแปลงข้อมูลด้วยการถอดรากที่สอง

ตัวอย่างการศึกษาจำนวนวันที่ใช้ฝึกอบรม และคะแนนการปฏิบัติงานของผู้เข้าอบรม เรื่องแบตเตอรี่ จำนวน 10 คน กำหนดให้ตัวแปร X คือ จำนวนวันที่ใช้ฝึกอบรม และตัว แปร Y คือ คะแนนการปฏิบัติงาน ข้อมูลอยู่ในแฟ้มชื่อ Tranl.sav คังแสคงในตาราง ต่อไปนี้

ตารางที่ 12.1 ข้อมูลจำนวนวันฝึกอบรมและคะแนนปฏิบัติงานของผู้เข้าอบรมเรื่องแบตเตอรี่

จำนวนวันฝึกอบรม	คะแนนปฏิบัติงาน	จำนวนวันฝึกอบรม	คะแนนปฏิบัติงาน
(X)	(Y)	(X)	(Y)
.5	43	2.0	158
.5	40	2.5	209
1.0	71	3.0	270
1.0	74	3.5	341
1.5	107		
1.5	109		

3.1 พล็อตกราฟของข้อมูล โดยใช้คำสั่ง Graphs

ขั้นตอนการใช้คำสั่งคือ

 1. ไปที่เมนูบาร์ คลิกที่ Graphs Scatter ... จะได้หน้าต่าง Scatterplot เลือกที่คำสั่ง Simple แล้วคลิกปุ่ม Define จะได้หน้าต่าง Simple Scatterplot

2. ในหน้าต่าง Simple Scatterplot

กลิกที่ตัวแปร Y ให้ย้ายไปอยู่ในช่อง Y Axis :

กลิกที่ตัวแปร X ให้ย้ายไปอยู่ในช่อง X Axis :

คลิกที่ปุ่ม OK จะได้ผลลัพธ์เป็นกราฟการกระจายของข้อมูล ดังภาพที่ 12.2

Graph

ภาพที่ 12.2 กราฟการกระจายของจำนวนวันที่ฝึกอบรม และคะแนนปฏิบัติงาน

จากการพลีอตกราฟของข้อมูล ได้เป็นเส้นโค้ง แสดงให้เห็นว่าการใช้สมการถดถอย เส้นตรงกับข้อมูลชุดนี้ไม่เหมาะสมจึงทำการแปลงข้อมูลเพื่อใช้ตัวแบบสถิติที่มีสมการแบบ เส้นตรง

3.2 การแปลงข้อมูลด้วยการถอดรากที่สอง

ตัวอย่างนี้ทำการแปลงข้อมูลคะแนนปฏิบัติงานด้วยการถอดรากที่สองและตั้งตัวแปร ใหม่เป็น Yprime จะได้ว่า Yprime = SQRT(Y) สามารถใช้กำสั่ง Transform ขั้นตอนการใช้กำสั่งคือ

1.เปิดแฟ้มข้อมูล tran1.sav

คลิกที่ปุ่ม Variable View เพื่อให้ได้หน้าต่าง Variable View สร้างตัวแปรใหม่สำหรับข้อมูลที่แปลงแล้ว โดยพิมพ์ชื่อตัวแปร Yprime ที่คอลัมน์ Name แล้วเลือกทศนิยม 4 ตำแหน่งที่คอลัมน์ Decimals

คลิกที่ปุ่ม Data View เพื่อให้ได้หน้าต่าง Data View

ในหน้าต่าง Data View
 คลิกที่คอลัมน์ของตัวแปร Yprime จะทำให้เกิดแถบคำทั้งคอลัมน์

ไปที่เมนูบาร์ คลิกที่ Transform, Compute... จะได้หน้าต่าง Compute Variable

3. ในหน้าต่าง Compute Variable

ในกรอบ Target Variable : พิมพ์ชื่อตัวแปร Yprime

ในกรอบ Functions : เลือกฟังก์ชัน SQRT (numexpr) แล้วคลิก ลูกศร 🔺 ให้ฟังก์ชันนี้ย้ายไปอยู่ในช่อง Numeric Expression : จะได้เป็น SQRT (?) โดยที่เครื่องหมาย ? เป็นแถบเข้ม

ในช่องซ้ายมือ คลิกเลือกตัวแปร Y แล้วคลิกที่ลูกศร ≻ จะได้ตัวแปร Y เข้า ไปอยู่แทนเครื่องหมาย ? ที่เป็นแถบเข้มเดิมได้เป็นฟังก์ชัน SQRT(Y)

แล้วคลิกปุ่ม OK จะได้หน้าต่างที่มีคำถามว่า ?Change existing variable? ตอบโดยคลิกที่ปุ่ม OK ผลลัพธ์ที่ได้คือ ค่าของตัวแปร Yprime

3.3 พล็อตกราฟของข้อมูลที่แปลงแล้ว

ข้อมูลคะแนนปฏิบัติงานที่แปลงแล้วอยู่ในตัวแปรใหม่คือ Yprime ทำการพล็อต กราฟระหว่างตัวแปร X กับ Yprime ขั้นตอนการใช้คำสั่งเหมือนกับในหัวข้อ 3.1 จะ ใค้ผลลัพธ์เป็นกราฟการกระจายของข้อมูลคังภาพที่ 12.3

ภาพที่ 12.3 กราฟการกระจายของจำนวนวันที่ฝึกอบรมและ SQRT (คะแนน ปฏิบัติงาน)

จากการพลีอตกราฟของข้อมูลได้เป็นเส้นตรงแสดงให้เห็นว่าสมการถดถอยแบบเส้นตรง เหมาะสมกับข้อมูลที่ทรานส์ฟอร์มแล้ว

4. ตัวอย่างการแปลงข้อมูลด้วย logarithmic

ตัวอย่างการศึกษาข้อมูลอายุและระดับพลาสมาของเด็กสุขภาพดี 14 คน กำหนดให้ตัว แปร X คือ อายุ และตัวแปร Y คือ ระดับพลาสมา ข้อมูลอยู่ในแฟ้มชื่อ tran2.sav ดังแสดงในตารางต่อไปนี้

อายุ (X)	ระคับพลาสมา (Y)	อายุ (X)	ระดับพลาสมา (Y)
0	17.0	4	4.6
0	11.2	4	6.5
1	9.2	5	5.3
1	12.6	5	3.8
2	7.4	6	3.2
2	10.5	6	4.5
3	8.3		
3	5.8		

•				
4 1 7 7	v ع	e	ಷ	a
ตาราษท 🔰 🖊 🆊	ิ ดเอบลอ	ายและระดาเพลาสา	าาของเดอสขอ	າາທຸດ
	ាតមាព	IÜ???!!@]@KITIM?!!?!9		111111
	ୟା	9	9	

4.1 พล็อตกราฟของข้อมูลโดยใช้คำสั่ง Graphs

ขั้นตอนการใช้คำสั่งเหมือนในหัวข้อ 3.1 ได้ผลลัพธ์เป็นกราฟของข้อมูล ดังภาพที่ 12.4

ภาพที่ 12.4 กราฟการกระจายของอายุและระดับพลาสมา

4.2 การแปลงข้อมูลด้วย logarithmic

ตัวอย่างนี้ทำการแปลงข้อมูลระดับพลาสมาด้วย logarithmic และตั้งตัวแปรใหม่ เป็น Yprime จะได้ว่า Yprime = Log₁₀(Y)

4.3 พล็อตกราฟของข้อมูลที่แปลงแล้ว

พลีอตกราฟการกระจายของอายุและ Log_{10} (ระดับพลาสมา) ใด้ดังภาพที่ 12.5

ภาพที่ 12.5 กราฟการกระจายของอายุและ Log₁₀(ระดับพลาสมา)

5. การวิเคราะห์การถดถอยสำหรับข้อมูลที่แปลงแล้ว

การแปลงข้อมูลของตัวแปรตามหรือตัวแปรอิสระหรือทั้งสองตัวแปรเพื่อทำให้ตัวแบบ การถดถอยแบบเส้นตรงเหมาะสมสำหรับข้อมูลที่แปลงแล้ว ตัวอย่างสมการถดถอยแบบเอกซ์ โพเนนเซียล $E(Y) = \beta_0 \beta_1^X$ เมื่อใส่ฟังก์ชัน logarithm เข้าไปทั้งสองข้างของ สมการ จะได้ว่า $\log[E(Y)] = \log(\beta_0) + \log(\beta_1)X$ ซึ่งเป็นสมการเส้นตรงที่ ได้มาจากการแปลงข้อมูลของตัวแปร Y ด้วย logarithm จึงสามารถใช้เทคนิคการ วิเคราะห์การถดถอยเชิงเส้นตรงในการประมาณค่าพารามิเตอร์ β_0 และ β_1 ได้ แล้วจึงหาค่า E(Y) โดยการทำ antilog

สำหรับกรณีที่ทำการแปลงข้อมูลของตัวแปร Υ ด้วยการถอดรากที่สอง เมื่อใช้ เทคนิคการวิเคราะห์การถดถอยเชิงเส้นตรงในการประมาณค่า β₀ และ β₁ แล้ว ถ้าต้องการ สมการถดถอยที่ใช้หน่วยเดิมของตัวแปร Υ ก่อนการแปลงข้อมูล ต้องยกกำลังสองเทอมขวา ของสมการถดถอยคือ

$$\hat{\mathbf{Y}} = (\mathbf{b}_0 + \mathbf{b}_1 \mathbf{X})^2$$

ข้อตกลงเบื้องต้นของการวิเคราะห์การถดถอยแบบไม่เป็นเส้นตรงเกี่ยวกับความ กลาดเคลื่อน (e) คือ ความคลาดเคลื่อนทั้งหลายของแต่ละประชากรย่อยเป็นตัวแปรสุ่มที่มีการ แจกแจงแบบปกติ ซึ่งมีค่าเฉลี่ยเท่ากับ 0 และความแปรปรวนคงที่เท่ากับ σ² สำหรับแต่ละค่า ของ X และความคลาดเคลื่อนทุกตัวเป็นอิสระกัน ซึ่งเหมือนกับข้อตกลงเบื้องต้นของการ วิเคราะห์การถดถอยเชิงเส้นตรง

5.1 ตัวอย่างการวิเคราะห์การถดถอยสำหรับการแปลงข้อมูลด้วยการถอดรากที่สอง

จากตัวอย่างการฝึกอบรมเรื่องแบตเตอรี่มีการทรานส์ฟอร์มข้อมูลของตัวแปร Y ด้วย การถอดรากที่สองเพื่อใช้ตัวแบบสถิติที่มีสมการถดถอยแบบเส้นตรง ขั้นตอนการวิเคราะห์การ ถดถอยเหมือนกับที่อธิบายไว้แล้วในบทที่ 9 การวิเคราะห์การถดถอย และอธิบายการใช้กำสั่ง Regression ตัวแบบเชิงเส้นไว้แล้วด้วยในบทเดียวกัน

(1) การคำนวณหาสมการถดถอยเชิงเส้นตรงและประเมินคุณภาพของเส้นถดถอยที่ ใด้โดยทดสอบว่าตัวแปร X มีความสัมพันธ์กับตัวแปร Y หรือไม่โดยใช้คำสั่ง **Model** fit ทดสอบสมมติฐาน H_0 : $\beta_1 = 0$ ข้อมูลอยู่ในแฟ้มข้อมูล tran1.sav ใช้ โปรแกรม SPSS ช่วยในการคำนวณจะได้ผลลัพธ์ดังภาพที่ 12.6

Regression

Variables Entered/Removed^b

	Variables	Variables	
Model	Entered	Removed	Method
1	x ^a		Enter

a. All requested variables entered.

b. Dependent Variable: yprime

Model Summary

	_		Adjusted	Std. Error of
Model	R	R Square	R Square	the Estimate
1	1.000 ^a	1.000	.999	.0974275

a. Predictors: (Constant), x

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	153.612	1	153.612	16183.118	.000 ^a
	Residual	.076	8	.009		
	Total	153.688	9			

a. Predictors: (Constant), x

b. Dependent Variable: yprime

		Unstandardized		Standardized		
		Coeffi	cients	Coefficients		
			Std.			
Model		В	Error	Beta	t	Sig.
1	(Constant)	4.462	.062		72.314	.000
	х	4.000	.031	1.000	127.213	.000

a. Dependent Variable: yprime

ภาพที่ 12.6

้จากภาพผลลัพธ์จะ ได้สมการถดถอยเชิงเส้นตรงของข้อมูลชุดนี้กือ

$$\wedge$$
 Yprime = 4.462 + 4.000X

แล้วทำให้เป็นสมการถคถอยที่ใช้หน่วยเคิมก่อนการแปลงข้อมูล ด้วยการยกกำลังสองเทอมขวา ของสมการได้เป็น

$$\hat{\mathbf{Y}} = (4.462 + 4.000 \mathrm{X})^2$$

สำหรับการทดสอบความเหมาะสมของเส้นถดถอยของตัวอย่างนี้ดูจากตาราง ANOVA ดูที่ค่าสถิติ F เท่ากับ 16183.118 และค่า Sig. เท่ากับ .000 สรุปว่าปฏิเสธ H₀ : β₁ = 0 นั่น คือ ตัวแปรอิสระ X มีอิทธิพลกับตัวแปรตาม Y อย่างมีนัยสำคัญทางสถิติ หรือใช้ X อธิบาย Y ได้ และจากตาราง Model Summary ดูที่ค่า R Square เท่ากับ 1.000 หมายความว่า X สามารถอธิบายความผันแปรของ Y ได้ 100% นอกจากนี้ความคลาดเกลื่อนมาตรฐานของการ ประมาณก่าดูที่ค่า Std. Error of the Estimate เท่ากับ .097

การวิเคราะห์การถดถอยแบบไม่เป็นเส้นตรง 281

 (2) ตรวจสอบข้อตกลงเบื้องต้นของตัวแบบการถคถอยเชิงเส้นตรง เพื่อตรวจสอบว่า สมการเส้นตรงที่ได้นี้เป็นไปตามข้อตกลงเบื้องต้นหรือไม่ ด้วยวิธีการตรวจสอบความ คลาคเคลื่อนโดยการพลีอตกราฟของความคลาดเคลื่อนสำหรับตัวแบบการถคถอยที่ใช้การแปลง ข้อมูลดังอธิบายไว้แล้วในหัวข้อที่ 5.3 ในบทที่ 9 ได้ผลลัพธ์ดังภาพที่ 12.7

Normal P-P Plot of Regression Standardized Residual

Dependent Variable: yprime

Scatterplot

ภาพที่ 12.7 Histogram, Normal P-P Plot ของค่าความคลาดเคลื่อนมาตรฐานและภาพการ กระจายของความคลาดเคลื่อน

จากภาพมีค่าสังเกตจำนวนเล็กน้อยเท่านั้นสำหรับ X ที่มีค่ามากที่แสดงว่าความแปร ปรวนของความคลาดเคลื่อนไม่เท่ากัน จึงสรุปว่าไม่มีหลักฐานเพียงพอที่จะสรุปว่าไม่เหมาะสม (lack of fit) ดังนั้น การแปลงข้อมูลด้วย √Y จึงมีประสิทธิภาพสำหรับข้อมูลชุดนี้

5.2 ตัวอย่างการวิเคราะห์การถดถอยสำหรับการแปลงข้อมูลด้วย logarithm

จากตัวอย่างข้อมูลระดับพลาสมา มีการแปลงข้อมูลของตัวแปร Y ด้วย logarithm เพื่อใช้ตัวแบบสถิติที่มีสมการถคถอยแบบเส้นตรง ข้อมูลอยู่ในแฟ้มข้อมูล tran2.sav

คำนวณหาสมการถคถอยเชิงเส้นตรง โคยใช้โปรแกรม SPSS ช่วยในการคำนวณ จะได้ผลลัพธ์ดังภาพที่ 12.8

Variables Entered/Removed ^b							
Variables Variables Model Entered Removed Method							
1	x ^a		Enter				

Regression

a. All requested variables entered.

b. Dependent Variable: yprime

การวิเคราะห์การถดถอยแบบไม่เป็นเส้นตรง 283

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.926 ^a	.857	.846	.08335295

a. Predictors: (Constant), x

ANOVA ^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	.501	1	.501	72.166	.000 ^a
	Residual	.083	12	.007		
	Total	.585	13			

a. Predictors: (Constant), x

b. Dependent Variable: yprime

Coefficients^a

		Unstanc Coeffi	lardized cients	Standardized Coefficients		
			Std.			
Model		В	Error	Beta	t	Sig.
1	(Constant)	1.131	.040		28.153	.000
	х	095	.011	926	-8.495	.000

a. Dependent Variable: yprime

ภาพที่ 12.8

้จากภาพผลลัพธ์จะ ได้สมการถดถอยเชิงเส้นตรงของข้อมูลชุดนี้กือ

$$Yprime = 1.131 - 0.095X$$

แล้วทำให้เป็นสมการถดถอยที่ใช้หน่วยเดิมก่อนการแปลงข้อมูลด้วยการ antilog เทอมขวา ของสมการได้เป็น

$$Y = antilog_{10} (1.131 - 0.095X)$$

สำหรับการทดสอบความเหมาะสมของเส้นถดถอยของตัวอย่างนี้ดูที่ค่าสถิติ F เท่ากับ 72.166 และค่า Sig. เท่ากับ .000 นั่นคือสรุปว่าสามารถใช้ X อธิบายความผันแปร ใน Y ใด้ และค่า R Square เท่ากับ .857 หมายความว่า X สามารถอธิบายความ ผันแปรของ Y ใด้ 85.7% ที่มี Std. Error of the Estimate เท่ากับ .083

6. การหาตัวแบบสถิติตัวแบบใหม่ที่เหมาะสมกับข้อมูล

การหาตัวแบบสถิติตัวแบบใหม่ที่เหมาะสมกับข้อมูล ผู้วิเคราะห์ต้องมีประสบการณ์ พอสมควรในการกาดกะเนรูปแบบความสัมพันธ์ที่อาจเป็นไปได้

6.1 พล็อตกราฟเพื่อหารูปแบบความสัมพันธ์

ตัวอย่างการศึกษาความสัมพันธ์ระหว่างจำนวนผู้ขายในร้านกาแฟ และปริมาณกาแฟที่ ขายได้หน่วยเป็นร้อยแกลลอน (Neter, J., et al. 1974) ข้อมูลอยู่ในแฟ้มข้อมูล curvel.sav มีข้อมูลดังตาราง

ร้านกาแฟ	จำนวนคนขาย	ปริมาณกาแฟที่ขาย (หน่วย : ร้อยแกลลอน)
(shop)	(X)	(Y)
1	0	508.1
2	0	498.4
3	1	568.2
4	1	577.3
5	2	651.7
6	2	657.0
7	3	713.4
8	3	697.5
9	4	755.3
10	4	758.9
11	5	787.6
12	5	792.1
13	6	841.4
14	6	831.8

ตารางที่ 12.3 ข้อมูลปริมาณการขายกาแฟของร้านกาแฟ 14 แห่ง

ขั้นตอนการใช้คำสั่ง คือ

1. ไปที่เมนูบาร์ คลิกที่ Graphs, Sequence จะได้หน้าต่าง Sequence Charts

คลิกที่ตัวแปร Y ให้ย้ายเข้าไปในช่อง Variables: แล้วคลิก OK จะได้กราฟดังภาพที่ 12.9

TSPLOT

MODEL: MOD_1.

ภาพที่ 12.9 กราฟของข้อมูล Y

6.2 การหาตัวแบบสถิติ

ผู้เชี่ยวชาญซึ่งมีประสบการณ์เกี่ยวกับเรื่องนี้เชื่อว่าความสัมพันธ์ระหว่างปริมาณการขาย และจำนวนคนขายมีลักษณะเป็นควอคราทิก และจากการพล็อตกราฟเพื่อหารูปแบบ ความสัมพันธ์ระหว่างจำนวนผู้ขายและปริมาณกาแฟที่ขายได้ พบว่าความสัมพันธ์ไม่น่าจะเป็น แบบเส้นตรงและสังเกตเห็นว่าปริมาณการขายเพิ่มขึ้นเมื่อจำนวนผู้ขายมากขึ้น แต่เมื่อมีคนขาย เพิ่มขึ้นมาก ๆ ทำให้ปริมาณการขายเพิ่มช้าลง ความสัมพันธ์อาจเป็นแบบควอคราทิก ซึ่งมีตัวแบบ สถิติกือ การหาตัวแบบสถิติที่เหมาะสมสามารถใช้โปรแกรมช่วยได้โดยใช้คำสั่ง Curve Estimation ซึ่งมีขั้นตอนการใช้คำสั่งคือ

1. ไปที่เมนูบาร์ คลิกที่ Analyze, Regression, Curve Estimation... จะได้ หน้าต่าง Curve Estimation

 ในหน้าต่าง Curve Estimation คลิกที่ตัวแปร Y ให้ย้ายเข้าไปในช่อง Dependent(s):

กลิกที่ตัวแปร X ให้ย้ายเข้าไปในกรอบ Independent ⊙ Variable :

ในกรอบ Model

เลือก 🛛 Linear

- เลือก 🛛 Quadratic
- เลือก 🛛 Cubic
- กลิกที่ปุ่ม Save ... จะได้หน้าต่าง Curve Estimation : Save
- 3. ในหน้าต่าง Curve Estimation : Save

ในกรอบ Save Variables

เลือก 🛛 Predicted Values

เลือก 🛛 Residuals

แล้วคลิกที่ปุ่ม Continue หน้าต่างนี้จะถูกปิดไป

4. ในหน้าต่าง Curve Estimation

คลิกที่ปุ่ม OK จะได้ผลลัพธ์ดังภาพที่ 12.10

```
Curve Fit
```

MODEL: MOD_3.

-

Independent: x

Dependent Mth Rsg d.f. F Sigf b0 b1 b2 b3 12 545.49 .000 523.800 54.8929 .978 y LIN 502.556 80.3857 у QUA .996 11 1390.94 .000 -4.2488y CUB .996 10 926.12 .000 500.306 87.8857 -7.6238 .3750

The following new variables are being created:

NameLabelFIT_1Fit for y with x from CURVEFIT, MOD_3 LINEARERR_1Error for y with x from CURVEFIT, MOD_3 LINEARFIT_2Fit for y with x from CURVEFIT, MOD_3 QUADRATICERR_2Error for y with x from CURVEFIT, MOD_3 QUADRATICFIT_3Fit for y with x from CURVEFIT, MOD_3 CUBICERR_3Error for y with x from CURVEFIT, MOD_3 CUBIC

У

ภาพที่ 12.10 รูปแบบความสัมพันธ์ของค่าสังเกตเทียบกับสมการ Linear, Quadratic และ Cubic

้จากการศึกษาความสัมพันธ์ระหว่างจำนวนผู้ขายในร้านกาแฟและปริมาณกาแฟที่

้งายได้ เราประมาณเส้นโค้งที่เหมาะสมกับข้อมูลคือ ควอคราทิก และคิวบิก ได้ผลลัพธ์ดังภาพที่ 7 พิจารณาเส้นโค้งที่เหมาะสมกับข้อมลได้ดังนี้

(1) ดูที่ค่า Rsg หรือ R Square คือ

- สำหรับตัวแบบเส้นตรง ดูที่บรรทัด LIN มีค่า \mathbb{R}^2 เท่ากับ .978
- สำหรับตัวแบบควอคราทิก ดที่บรรทัด OUA มีค่า R^2 เท่ากับ .996
- สำหรับตัวแบบคิวบิก ดที่บรรทัด CUB มีค่า R^2 เท่ากับ .996

(2) ดูที่ค่าสถิติ F และค่า Sig. ของการทดสอบสมมติฐานเกี่ยวกับ β ของแต่ละตัว แบบคือ

- ตัวแบบเส้นตรง สมมติฐานที่ต้องการทดสอบคือ H_{0} : $\beta_{1} = 0$ ค่าสถิติทดสอบ F เท่ากับ 545.49 และค่า Sig. เท่ากับ .000

- ตัวแบบควอคราทิก สมมติฐานที่ต้องการทคสอบคือ H_0 : $\beta_1 = \beta_2 = 0$ สถิติทคสอบ F เท่ากับ 1390.94 และค่า Sig. เท่ากับ .000

- ตัวแบบคิวบิก สมมติฐานที่ต้องการทดสอบคือ H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$ สถิติทดสอบ F เท่ากับ 926.12 และค่า Sig. เท่ากับ .000

พบว่าผลการทดสอบสมมติฐานของทุกตัวแบบ ปฏิเสธ H_0 นั่นคือ มี $\beta_{\mathrm{i}}
eq 0$ อย่างน้อย 1 ค่า (3) ได้ค่าประมาณของสัมประสิทธิ์การถดถอยของแต่ละตัวแบบคือ

- ตัวแบบเส้นตรง : - ตัวแบบควอดราทิก :
- ตัวแบบคิวบิก :
 - (4) มีการสร้างตัวแปรใหม่ในแฟ้มข้อมูล curvel.sav อีก 6 ตัวแปรคือ
 - fit 1 คือ ค่าประมาณของตัวแปร Y ของตัวแบบเส้นตรง
 - err 1 คือ ค่าความคลาดเคลื่อนที่เกิดจากการประมาณค่าตัวแปร Y ของตัว แบบเส้นตรง

fit 2 คือ ค่าประมาณของตัวแปร Y ของตัวแบบควอดราทิก

- err 2 คือ ค่าความคลาดเคลื่อนที่เกิดจากการประมาณค่าตัวแปร Y ของตัว แบบควอดราทิก
- fit 3 คือ ค่าประมาณของตัวแปร Y ของตัวแบบคิวบิก
- err 3 คือ ค่าความคลาดเคลื่อนที่เกิดจากการประมาณค่าตัวแปร Y ของตัว แบบคิวบิก

6.2.2 การแปลความหมาย

(1) การหาตัวแบบสถิติที่เหมาะสมกับข้อมูล พิจารณาจากค่า Rsq ของทั้ง 3 ตัวแบบ พบว่าตัวแบบควอดราทิกและคิวบิกมีค่า Rsq เท่ากัน และสูงกว่าของตัวแบบเส้นตรง และจากภาพกราฟของเส้นโค้งควอดราทิกและคิวบิกใกล้เคียงกันมาก ดังนั้นจะเลือกตัวแบบควอด ราทิกหรือคิวบิกก็ได้ แต่ส่วนใหญ่จะเลือกตัวแบบที่ง่ายกว่าในที่นี้จึงเลือกตัวแบบ ควอดราทิก

(2) การทดสอบความเหมาะสมของตัวแบบควอดราทิก พิจารณาจากค่าสถิติ F เท่ากับ 1390.94 และค่า Sig. เท่ากับ .000 นั่นคือตัวแบบควอดราทิกเหมาะสมกับ ข้อมูล

(3) ใช้สถิติทคสอบ t เพื่อทคสอบว่าเทอมที่เป็นควอคราทิกสมควรอยู่ในตัว แบบหรือไม่ สมมติฐานทางสถิติที่ด้องการทคสอบคือ H₀: β₂ = 0 คู่กับ H₁ : β₂
 ≠ 0 ใช้โปรแกรม SPSSช่วยได้คือ

1. ไปที่เมนูบาร์ คลิกที่ Analyze, Regression , Curve Estimation... จะได้หน้าต่าง Curve Estimation

ในหน้าต่าง Curve Estimation

 เลือก Y ให้ย้ายไปอยู่ในช่อง Dependent(s):
 เลือก X ให้ย้ายไปอยู่ในช่อง Independent ⊙ Variable :
 ในกรอบ Model เลือก □ Quadratic
 เลือก □ Display ANOVA table
 คลิกปุ่ม OK จะได้ผลลัพธ์ดังภาพที่ 12.11

MODEL: MOD_4.

-

290

Dependent variable.. y Method.. QUADRATI

Listwise Deletion of Missing Data

.99803
.99606
.99535
7.85795

Analysis of Variance:

DF Sum of Squares Mean Square 2 171773.44 85886.722 Regression Residuals 679.22 61.747 11 Signif F = .0000F = 1390.93854------ Variables in the Equation ------Variable в SE B Beta Т Sig T 3.786053 1.448565 21.232 .0000 х 80.385714 x**2 -4.248810 .606254 -.478144 -7.008 .0000 502.555952 4.850030 103.619 .0000 (Constant)

The following new variables are being created:

 Name
 Label

 FIT_4
 Fit for y with x from CURVEFIT, MOD_4 QUADRATIC

 ERR_4
 Error for y with x from CURVEFIT, MOD_4 QUADRATIC

ภาพที่ 12.11 ค่าสถิติทคสอบ t และค่า Sig.

จากการคำนวณได้ค่าสถิติทดสอบ t สำหรับเทอม X^2 เท่ากับ –7.008 และค่า Sig. เท่ากับ .000 จึงสรุปว่าปฏิเสษ H_0 นั่นคือ เทอมควอดราทิกสมควรอยู่ใน ตัวแบบ

6.2.3 การตรวจสอบข้อตกลงเบื้องต้นของการวิเคราะห์การถดถอย

การตรวจสอบข้อตกลงเบื้องต้นของการวิเคราะห์การถดถอยเกี่ยวกับค่าความ คลาดเคลื่อนคือ ค่าความคลาดเคลื่อนเป็นอิสระกัน มีการแจกแจงแบบปกติที่มีค่าเฉลี่ยเท่ากับ 0 และมีค่าความแปรปรวนเป็นค่าคงที่เท่ากับ σ² มีขั้นตอนดังนี้

(1) การตรวจสอบความเป็นปกติ มีวิธีการทำคือ

1. ไปที่เมนูบาร์ คลิกที่ Analyze, Descriptive Statistics, Explore... จะได้หน้าต่าง Explore

เลือกตัวแปร ERR_2 ให้ย้ายเข้าไปในช่อง Dependent List: กลิกที่ปุ่ม Plots... จะได้หน้าต่าง Explore : Plots

3. ในหน้าต่าง Explore

คลิกที่ปุ่ม OK จะได้ผลลัพธ์ดังภาพที่ 12.12

Explore

Case Processing	Summary
-----------------	---------

		Cases					
	Valid		Missing		Total		
	Ν	Percent	Ν	Percent	Ν	Percent	
Error for y with x from CURVEFIT, MOD_3 QUADRATIC	14	87.5%	2	12.5%	16	100.0%	

Descriptives

			Statistic	Std. Error
Error for y with x from	Mean		.0000000	1.931833
CURVEFIT, MOD_3 QUADRATIC	95% Confidence Interval for Mean	Lower Bound	-4.1734725	
		Upper Bound	4.1734725	
	5% Trimmed Mean			
			0001984	
	Median		4654762	
	Variance		52.248	
	Std. Deviation			
			7.22825905	
	Minimum		-10.66429	
	Maximum		10.66786	
	Range		21.33214	
	Interquartile Range		12.75625	
	Skewness		065	.597
	Kurtosis		-1.255	1.154

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.
Error for y with x from CURVEFIT, MOD_3 QUADRATIC	.128	14	.200*	.946	14	.505

* This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Error for y with x from CURVEFIT, MOD_3 QUADRATIC Stem-and-Leaf Plot

 Frequency
 Stem & Leaf

 2.00
 -1.
 00

 2.00
 -0.
 67

 4.00
 -0.
 0014

 1.00
 0.
 2

 4.00
 0.
 5579

 1.00
 1.
 0

Stem width: 10.00000 Each leaf: 1 case(s)

Normal Q-Q Plot of Error for y with a from CURVEFIT, MOD_3 QUADRATIC

Detrended Normal Q-Q Plot of Error for y with x from CURVEFIT, MOD_3 QUADRATIC

ภาพที่ 12.12 ค่าสถิติการทดสอบความเป็นปกติและกราฟแสดงความเป็นปกติ

จากภาพผลลัพธ์ ดูที่ตาราง Test of Normality ได้ค่าสถิติ Kolmogorov – Smirnov เท่ากับ .128 และค่า Sig. เท่ากับ .200 สรุปว่า ยอมรับ H₀ : ความคลาดเคลื่อนมีการแจกแจงแบบปกติ และจากภาพกราฟ Normal Q-Q Plot ของความคลาดเคลื่อนเข้าใกล้เส้นตรง แสดงว่าความคลาดเคลื่อนมีการแจกแจง แบบปกติ

(2) การตรวจสอบความคงที่ของความแปรปรวน มีวิธีการทำคือ

1. ไปที่เมนูบาร์ คลิกที่ Graphs, Scatter... จะได้หน้าต่าง Scatterplot

2. ในหน้าต่าง Scatterplot

เลือก Simple แล้วคลิกปุ่ม Define จะได้หน้าต่าง Simple Scatterplot

3. ในหน้าต่าง Simple Scatterplot
 เลือก ERR_2 ให้ย้ายไปอยู่ในช่อง Y Axis:
 เลือก FIT_2 ให้ย้ายไปอยู่ในช่อง X Axis:
 แล้วคลิกปุ่ม OK จะได้ผลลัพธ์ดังภาพที่ 12.13

Graph

ภาพที่ 12.13 กราฟของความคลาดเคลื่อน (e_j) กับค่าประมาณของตัวแปร Y_j ของตัวแบบควอคราทิก

การแปลความหมายจากกราฟความคลาดเคลื่อนมีการกระจายห่างจาก 0 อย่างไม่มี ระบบเมื่อ Ŷ_j เพิ่มขึ้น แสดงว่าตัวแบบควอดราทิกเหมาะสมกับข้อมูลดี นอกจากนี้ยังแสดงว่า ความแปรปรวนของความคลาดเคลื่อนเท่ากับค่ากงที่ แสดงว่าเป็นไปตามข้อตกลงเบื้องต้นที่ว่า กวามแปรปรวนของกวามคลาดเคลื่อนเท่ากับค่ากงที่

7. สมการถดถอยโพลีโนเมียลที่มีตัวแปรอิสระ 2 ตัวแปร

ตัวอย่างการศึกษาคนงานจำนวน 18 คน ที่มีอายุระหว่าง 35-44 ปี มีรายได้เฉลี่ย ระหว่าง 2 ปีที่ผ่านมาแทนด้วย X₁ คะแนนความเสี่ยงวัดจากแบบสอบมาตรฐาน คะแนนมาก หมายความว่า มีดีกรีความเสี่ยงมาก แทนด้วย X₂ และจำนวนวงเงินประกัน แทนด้วย Y ข้อมูลวงเงินประกันชีวิตของคนงานดังแสดงในตาราง

คนงาน	รายได้เฉถี่ยต่อปี	คะแนนความเสี่ยง	วงเงินประกัน
	(พันคอลลา)		(พันดอลลา)
j	\mathbf{X}_{1j}	X_{2j}	Y _j
1	66.290	7	196
2	40.964	5	63
3	72.996	10	252
4	45.010	6	84
5	57.204	4	126
6	26.852	5	14
7	38.122	4	49
8	35.840	6	49
9	75.796	9	266
10	37.408	5	49
11	54.376	2	105
12	46.186	7	98
13	46.130	4	77
14	30.366	3	14
15	39.060	5	56
16	79.380	1	245
17	52.766	8	133
18	55.916	6	133
	$\overline{X}_{1} = 50.037$	$\overline{X}_{2} = 5.389$	

ตารางที่ 12.4 ข้อมูลวงเงินประกันชีวิตของคนงาน

ต้องการศึกษาความสัมพันธ์ระหว่างรายใด้เฉลี่ยต่อปี และคะแนนความเสี่ยงกับวงเงิน ประกันชีวิตของคนงานในกลุ่มอายุที่กำหนด ผู้วิจัยคาคว่ารายได้และวงเงินประกันมี ความสัมพันธ์แบบควอคราทิก อย่างไรก็ดีเขาไม่แปลกใจถ้าคะแนนความเสี่ยงมีอิทธิพลแบบ เส้นตรงไม่ใช่อิทธิพลแบบควอคราทิกกับจำนวนวงเงินประกันชีวิต และไม่แน่ใจว่าตัวแปรทั้ง 2 ตัวมีปฏิสัมพันธ์กันหรือไม่ต่อจำนวนวงเงินประกัน ดังนั้นจึงเลือกใช้ตัวแบบการถดถอยโพลีโน เมียลที่มีกำลังสองคือ

$$Y_{j} = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{2} + \beta_{3}X_{1}^{2} + \beta_{4}X_{2}^{2} + \beta_{5}X_{1}X_{2} + e$$

เราจะมุ่งเน้นที่การวิเคราะห์อิทธิพลของปฏิสัมพันธ์ (interaction) และอิทธิพล ของ ควอคราทิก

7.1 การวิเคราะห์การถดถอย

ข้อมูลอยู่ในแฟ้ม curve2.sav ใช้โปรแกรม SPSS ช่วยในการคำนวณโดยมี ขั้นตอนคือ

1. สร้างตัวแปร X1X1, ตัวแปร X2X2, และตัวแปร X1X2 ใน หน้าต่าง Variable View

2. ใช้คำสั่ง Transform , Compute เพื่อคำนวณค่าให้ตัวแปรที่สร้างขึ้นใหม่ คือ

> ตัวแปร X1X1 = X1 * X1 ตัวแปร X2X2 = X2 * X2 ตัวแปร X1X2 = X1 * X2

3. ไปที่เมนูบาร์ คลิกที่ Analyze, Regression, Linear จะได้หน้าต่าง Linear Regression

เลือกตัวแปร Y ให้ย้ายเข้าไปในช่อง Dependent:

เลือกตัวแปร X1 , X2 , X1X1 , X2X2 และ X1X2 ให้ย้ายเข้าไป ในช่อง Independent(s):

คลิกที่ปุ่ม OK จะได้ผลลัพธ์ดังภาพที่ 12.14

Regression

Variables Entered/Removed^b

	Variables	Variables	
Model	Entered	Removed	Method
1	x1x2, x1x1, x2x2, x2, x1 ^a		Enter

a. All requested variables entered.

b. Dependent Variable: y

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	1.000 ^a	1.000	1.000	1.743

a. Predictors: (Constant), x1x2, x1x1, x2x2, x2, x1

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	108005.821	5	21601.164	7110.202	.000 ^a
	Residual	36.457	12	3.038		
	Total	108042.278	17			

a. Predictors: (Constant), x1x2, x1x1, x2x2, x2, x1

b. Dependent Variable: y

		Unstand Coeffic	ardized cients	Standardized Coefficients		
			Std.			
Model		В	Error	Beta	t	Sig.
1	(Constant)	-65.386	6.123		-10.679	.000
	x1	1.017	.228	.198	4.460	.001
	x2	5.217	1.349	.151	3.868	.002
	x1x1	.036	.002	.758	16.342	.000
	x2x2	.166	.120	.055	1.383	.192
	x1x2	020	.014	046	-1.401	.186

Coefficients^a

a. Dependent Variable: y

ภาพที่ 12.14 ผลลัพธ์การวิเคราะห์การถดถอยสำหรับตัวแบบโพลีโนเมียลที่มีเทอมยกกำลังสอง ของตัวอย่างเรื่องการประกันชีวิต

7.2 ผลลัพธ์การวิเคราะห์การถดถอย

(1) ผลการวิเคราะห์การถดถอยสำหรับตัวแบบการถดถอยโพลีโนเมียลที่มีเทอมกำลัง สอง ดูค่าสัมประสิทธิ์การถดถอยได้จากตาราง Coefficients เขียนเป็นสมการถดถอยแบบ โพลีโนเมียลที่มีเทอมกำลังสองคือ

^

 $Y_{j} = -65.386 + 1.017X_{1} + 5.217X_{2} + 0.036X_{1}^{2} + 0.166X_{2}^{2} - 0.020X_{1}X_{2}$

(2) ดูผลการทดสอบสมมติฐานของตัวแบบการถดถอย H_0 : $\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$ คู่กับ H_1 : มี β_i อย่างน้อย 1 ค่าที่ไม่เท่ากับ 0 ได้จากตาราง ANOVA ที่บรรทัด Regression ได้ค่าสถิติทดสอบ F เท่ากับ 7110.202 และค่า Sig. เท่ากับ .000

7.3 การพัฒนาตัวแบบ

ทคสอบอิทธิพลร่วม (β₅X₁X₂) เป็นอันคับแรก แล้วทคสอบอิทธิพลควอคราทิก ของคะแนนเสี่ยง (β₄X₂²) เป็นอันคับต่อมา

(1) การทดสอบอิทธิพลร่วม

การวิเคราะห์ความแปรปรวนของการถดถอยเพื่อทดสอบอิทธิพลร่วม $(\beta_5 X_1 X_2)$ โดยการทดสอบ F บางส่วน หรือการทดสอบ t สมมติฐานที่ต้องการทดสอบคือ H_0 : $\beta_5 = 0$ คู่กับ H_1 : $\beta_5 \neq 0$ ซึ่งดูค่าสถิติทดสอบ t ได้จากตาราง Coefficients ที่ บรรทัด X1X2 ได้ค่าสถิติทดสอบ t เท่ากับ -1.401 และค่า Sig. เท่ากับ .186 ผลการทดสอบจึงสรุปว่ายอมรับ H_0 นั่นคือไม่ควรมีอิทธิพลร่วมในตัวแบบการถดถอย ดังนั้นจึงตัดสินใจตัดเทอมอิทธิพลร่วมออกจากตัวแบบการถดถอย และใช้โปรแกรม SPSS ช่วยวิเคราะห์การถดถอยจากตัวแบบที่ได้ใหม่

(2) การทคสอบอิทธิพลควอคราทิกของคะแนนความเสี่ยง

สมมติฐานที่ต้องการทดสอบคือ H₀ : β₄ = 0 คู่กับ H₁ : β₄ ≠ 0 ซึ่งดู ก่าสถิติทดสอบ t ได้จากตาราง Coefficients ที่บรรทัด X2X2 ได้ก่าสถิติทดสอบ t เท่ากับ 1.383 และก่า Sig. เท่ากับ .192 ผลการทดสอบจึงสรุปว่ายอมรับ H₀ นั่น คือไม่ควรมีอิทธิพลควอดราทิกของคะแนนความเสี่ยงในตัวแบบการถดถอย ดังนั้นจึงตัดสินใจตัด เทอมอิทธิพลควอดราทิกของคะแนนความเสี่ยงออกจากตัวแบบการถดถอย และใช้โปรแกรม SPSS ช่วยวิเคราะห์การถดถอยจากตัวแบบที่ได้ใหม่

(3) ผลการวิเคราะห์การถดถอยสำหรับตัวแบบที่ได้ใหม่ซึ่งตัดอิทธิพลร่วมและ อิทธิพล ควอดราทิกของคะแนนความเสี่ยงออกแล้ว ได้ดังภาพที่ 12.15

Regression

Variables Entered/Removed^b

	Variables	Variables	
Model	Entered	Removed	Method
1	x1x1, x2, x1 a		Enter

a. All requested variables entered.

b. Dependent Variable: y

Model Summary

			Adjusted	Std. Error of
Model	R	R Square	R Square	the Estimate
1	1.000 ^a	1.000	.999	1.803

a. Predictors: (Constant), x1x1, x2, x1

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	107996.752	3	35998.917	11070.294	.000 ^a
	Residual	45.526	14	3.252		
	Total	108042.278	17			

a. Predictors: (Constant), x1x1, x2, x1

b. Dependent Variable: y

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
			Std.			
Model		В	Error	Beta	t	Sig.
1	(Constant)	-62.349	5.200		-11.989	.000
	x1	.840	.207	.164	4.052	.001
	x2	5.685	.198	.164	28.738	.000
	x1x1	.037	.002	.785	19.515	.000

a. Dependent Variable: y

ภาพที่ 12.15 ผลลัพธ์การวิเคราะห์การถคถอยสำหรับตัวแบบซึ่งตัดเทอมอิทธิพลร่วมและ อิทธิพลควอดราทิกของคะแนนเสี่ยงออก ตัวแบบการถคถอยที่ได้ใหม่เขียนเป็นสมการถคถอยได้กือ

$$\hat{Y}_{j} = -62.349 + 0.840X_{1} + 5.685X_{2} + 0.037X_{1}^{2}$$

ผลการทคสอบสมมติฐานของตัวแบบการถคถอยที่ได้ใหม่ได้ก่าสถิติทคสอบ F เท่ากับ 11070.294 และค่า Sig. เท่ากับ .000 สรุปผลการทคสอบได้ว่าปฏิเสธ H₀ นั่นคือมี β_i อย่างน้อย 1 ก่าที่ไม่เท่ากับ 0

และผลการทคสอบอิทธิพลของแต่ละเทอมในตัวแบบคือ X_1 , X_2 และ ${X_1}^2$ ได้ ค่าสถิติทคสอบ t เท่ากับ 4.052, 28.738, และ 19.515 ตามลำดับ และค่า Sig. เท่ากับ .001, .000, และ .000 ตามลำดับ ผลการทคสอบจึงสรุปว่าขอมรับ H_0 นั่นคือมี อิทธิพล X_1 , X_2 , และ ${X_1}^2$ ในตัวแบบการถดถอย

แบบฝึกหัดบทที่ 12

ในการศึกษาอิทธิพลของน้ำหนักตัวของปลาที่มีต่อการขับถ่ายของเสีย (endogenous nitrogen excretion : ENE) ของปลาคาร์พในญี่ปุ่น รายงานอยู่ในวารสาร Fisheries Science (Feb. 1995. อ้างถึงใน Mendenhall, W. and Sincich, T. 2003) ทำการทดลองโดยแบ่งปลาคาร์พ ออกเป็นกลุ่ม ๆ ละ 2 ถึง 15 ตัว ตามน้ำหนักตัว แล้วจัดให้แต่ละกลุ่มอยู่ในแทงค์แยกกัน ให้ อาหารชนิดไม่มีโปรตีน 3 ครั้งต่อวัน ทำการศึกษาเป็นเวลา 20 วัน หลังสิ้นสุดการทดลองทำ การวัดน้ำหนักตัวเฉลี่ยเป็น กรัมของปลาคาร์พแต่ละกลุ่ม และปริมาณ ENE เป็นมิลลิกรัมต่อน้ำ หนักตัว 100 กรัม ต่อวัน ได้ข้อมูลดังตาราง

ตาราง ข้อมูลน้ำหนักตัวปลา และปริมาณ ENE ในแทงค์ต่าง ๆ

แทงค์	น้ำหนักตัว $({ m x})$	ENE (y)
1	11.7	15.3
2	25.3	9.3
3	90.2	6.5
4	213.0	6.0
5	10.2	15.7
6	17.6	10.0
7	32.6	8.6
8	81.3	6.4
9	141.5	5.6
10	285.7	6.0

แหล่งที่มา : Watanabe, T., and Ohta, M. "Endogenous nitrogen excretion and non-fecal energy losses in carp and rainbow trout." Fisheries Science, Vol. 61, No.1, Feb. 1995, p.56 (Table5) อ้างถึงใน Mendenhall, W. and Sincich T. 2003.

- ก. จงสร้างกราฟการกระจายของข้อมูลน้ำหนักตัว (\mathbf{x}) และปริมาณ $\mathrm{ENE}\left(\mathbf{y}
 ight)$
- ง. จงประมาณเส้นโค้งที่เหมาะสมกับข้อมูล
- ค. จงเขียนตัวแบบการถดถอยโพลีโนเมียลที่มีเทอมกำลังสอง สำหรับปริมาณ $\mathrm{ENE}(\mathbf{y})$

ที่ถด ถอยบนน้ำหนักตัวของปลาคาร์พ (X)

- จงทดสอบความเหมาะสมของตัวแบบการถดถอยแบบควอดราทิก
- จงตรวจสอบข้อตกลงเบื้องต้นของการวิเคราะห์การถคถอยเกี่ยวกับค่าความคลาคเคลื่อน
- คือ ค่าความคลาดเคลื่อนเป็นอิสระกัน มีการแจกแจงแบบปกติที่มีค่าเฉลี่ยเท่ากับ **0** และมี ค่าความแปรปรวนเป็นค่าคงที่เท่ากับ σ²
- 2. อาศัยข้อมูลจากข้อ 1
 - ก. จงเลือกใช้วิธีการทรานส์ฟอร์มที่เหมาะสมกับข้อมูล และตรวจสอบด้วยการสร้างกราฟ
 การกระจายของข้อมูลที่ทรานส์ฟอร์มแล้วของน้ำหนักตัว (x) กับปริมาณ ENE
- (y)
 - บ. วิเคราะห์การถดถอยสำหรับข้อมูลที่ทรานส์ฟอร์มแล้วเพื่อหาสมการถดถอยเชิงเส้นตรง
 สำหรับปริมาณ ENE (y) ที่ถดถอยบนน้ำหนักตัวปลา (x)
 - จงทดสอบความเหมาะสมของเส้นถดถอยที่ได้จากข้อ ข.
- ในการศึกษาวิธีการขุดเจาะน้ำมันตามธรรมชาติ ได้ทำการศึกษาเกี่ยวกับอิทธิพลของความดัน ของคาร์บอนไดออกไซด์ (CO₂) และมุมของท่อที่จุ่มลงในบ่อน้ำมันตามธรรมชาติที่มีค่อ เปอร์เซ็นต์การแทนที่ของน้ำมันตามธรรมชาติ ผู้วิจัยสนใจศึกษาความดันของ การ์บอนไดออกไซด์ 3 ระดับคือ 1000, 1500, และ 2000 และมุมของท่อที่จุ่มลง ในบ่อน้ำมัน 3 ระดับคือ 0, 15, และ 30 ดีกรี แล้วบันทึกการแทนที่ของน้ำมันเป็น เปอร์เซ็นต์ได้ข้อมูลดัง ตาราง

ความคัน	มุมของท่อ	ปริมาณการแทนที่ของน้ำมัน
(ปอนค์ต่อตารางนิ้ว)	(ดีกรี)	(เปอร์เซ็นต์)
1000	0	60.58
1000	15	72.72
1000	30	79.99
1500	0	66.83
1500	15	80.78
1500	30	89.78
2000	0	69.18
2000	15	80.31
2000	30	91.99

ตาราง ข้อมูลความดันเป็นปอนด์ต่อตารางนิ้ว มุมของท่อ และปริมาณการแทนที่ของน้ำมัน เป็นเปอร์เซ็นต์

แหล่งที่มา : Wang, G.C. "Microscopic investigation of CO₂ flooding process." Journal of Petroleum Technology, Vol. 34, No.8, Aug. 1982, pp. 1789-1797. Copyright © 1982, Society of Petroleum Engineers, American Institute of Mining. First published in the JPT Aug. 1982. อ้างถึงใน Mendenhall, W. and Sincich, T. 2003.

ก. จงสร้างกราฟการกระจายของข้อมูลความคัน (x_1) และปริมาณการแทนที่ของน้ำมัน (y) และกราฟการกระจายของข้อมูลมุมของท่อ (x_2) และปริมาณการแทนที่ของ น้ำมัน (y)

งงประมาณเส้นโค้งที่เหมาะสมกับข้อมูลในข้อ ก.

ค. จงเขียนตัวแบบการถดถอยโพลีโนเมียลที่มีเทอมกำลังสองและเทอมของปฏิสัมพันธ์

สำหรับปริมาณการแทนที่ของน้ำมัน (y) ที่ถุดถอยบนความดัน (x_1) และมุมของ ท่อ (x_2)

จงหาตัวแบบการถดถอยที่เหมาะสมกับข้อมูล และแปลความหมาย

- 4. อาศัยข้อมูลจากแบบฝึกหัดที่ 10 ข้อ 1
 - ก. จงเขียนตัวแบบการถดถอยโพลีโนเมียลที่มีเทอมกำลังสองสำหรับรายได้ต่อปี (y) ที่ถด
 ถอยบนอายุ (x₁) และจำนวนชั่วโมงทำงานต่อวัน (x₂)
 - ง. จงใช้ข้อมูลในตารางเพื่อหาสมการถคถอยของกลุ่มตัวอย่างผู้ก้าเร่ตามตัวแบบในข้อ ก.
 - จงทคสอบสมมติฐานเกี่ยวกับเทอมกำลังสองในตัวแบบการถคถอยและสรุปผลการ ทคสอบ
 - จงหาสมการถดถอยที่เหมาะสมกับข้อมูล และแปลความหมาย
 - จงทดสอบความเหมาะสมของเส้นถดถอยที่ได้จากข้อ ง.
- 5. จากแบบฝึกหัดบทที่ 8 ข้อ 4 สมมติว่าจำนวนปีของประสบการณ์ในการทำงานของ โปรแกรมเมอร์แต่ละคนเข้าใกล้ก่าเฉลี่ยของจำนวนปีเฉลี่ยในชั้นนั้น ดังนั้นเราจึงสามารถใช้
- ค่า เฉลี่ยแทนจำนวนปีของประสบการณ์ของโปรแกรมเมอร์แต่ละคนในชั้นเดียวกัน ได้ข้อมูลดัง ตาราง (ปรับข้อมูลจาก Neter, J. and Wasserman, W. 1974)

โปรแกรมเมอร์	ความคลาดเคลื่อนของการ	จำนวนปีของประสบ	ประเภทของประสบการณ์
	คำนวณจำนวนคนต่อวัน (y)	การณ์ในการทำงาน (\mathbf{x}_1)	S = small-scale
			systems $L = large-$
			scale systems
1	-278	1.0	S
2	-196	1.0	S
3	-241	1.0	S
4	-188	1.0	S
5	-109	3.5	S
6	-118	3.5	S
7	-88	3.5	S
8	-96	3.5	S
9	-46	7.5	S
10	-92	7.5	S
11	-89	7.5	S
12	-58	7.5	S
13	-83	1.0	L
14	-44	1.0	L
15	-68	1.0	L
16	-57	1.0	L
17	-47	3.5	L
18	-52	3.5	L
19	-31	3.5	L
20	-49	3.5	L
21	-38	7.5	L
22	-33	7.5	L
23	-42	7.5	L
24	-31	7.5	L

ตาราง ข้อมูลความคลาดเคลื่อนของการคำนวณจำนวนคนต่อวัน จำนวนปีของประสบการณ์ ในการทำงาน และประเภทของประสบการณ์ของโปรแกรมเมอร์แต่ละคน

ก. จงพลีอตกราฟการกระจายของจำนวนปีในการทำงาน (X₁) และความคลาคเคลื่อนของ
 การคำนวณจำนวนคนต่อวัน (y) ได้แนวโน้มของลักษณะความสัมพันธ์เป็นแบบ
 เส้นตรง หรือไม่

ข. จงทรานส์ฟอร์มความคลาคเคลื่อนของการคำนวณจำนวนคนต่อวัน (y) ด้วยการใส่ logarithm แล้วตั้งชื่อตัวแปรใหม่เป็น \mathbf{v}'

ค. จงพลีอตกราฟการกระจายของ \mathbf{X}_1 และ \mathbf{y}' ได้แนวโน้มของลักษณะความสัมพันธ์ เป็น แบบเส้นตรงหรือใน่

- ง. จงหาสมการถคถอยเชิงเส้นตรงของ \mathbf{y}' ที่ถคถอยบนจำนวนปีของประสบการณ์ในการ ้ทำงาน และประเภทของประสบการณ์ และประเมินความเหมาะสมของตัวแบบนี้
- ง. งงหาสมการถคลอยของ \mathbf{y}' ในข้อ ง. สำหรับโปรแกรมเมอร์ที่มีประสบการณ์แบบ small-scale systems และสำหรับโปรแกรมเมอร์ที่มีประสบการณ์แบบ large-scale

systems

- จงเขียนสมการถดถอยของ V ที่ใช้หน่วยเดิมก่อนการทรานส์ฟอร์ม
- ช. จงเปรียบเทียบสมการถดถอยระหว่างประเภทของประสบการณ์ และแปลความหมาย

6. ในการศึกษาเกี่ยวกับความเข้มข้นของสารละลายชนิดหนึ่ง (y) ในช่วงเวลาหนึ่ง (x) วิธีการ ศึกษาคือ เตรียมตัวอย่างสารละลาย y จำนวน 15 ตัวอย่าง แบ่งออกเป็น 5 กลุ่ม ๆ ละ 3 ตัว อย่างโดยสุ่ม แล้ววัดความเข้มข้นของสารละลาย y ที่เวลา 1,3,5,7 และ 9 ชั่วโมง ของ กลุ่มตัวอย่างสารละลายทั้ง 5 กลุ่ม ตามลำคับเวลา ได้ข้อมูลคังตาราง (Neter, J. and Wasserman, W. 1974)

ตัวอย่างสารละลาย	เวลาที่วัด (X)	ความเข้มข้น (y)
1	9	.07
2	9	.09
3	9	.08
4	7	.16
5	7	.17
6	7	.21
7	5	.49
8	5	.58
9	5	.53
10	3	1.22
11	3	1.15
12	3	1.07
13	1	2.84
14	1	2.57
15	1	3.10

ตาราง ข้อมูลความเข้มข้นของสารละลายและเวลาที่วัด (ชั่วโมง) ของตัวอย่างสารละลาย

 ก. จงพลีอตกราฟการกระจายของความเข้มข้นและเวลาที่วัด ได้แนวโน้มของลักษณะความ สัมพันธ์เป็นแบบเส้นตรงหรือไม่

งงทรานส์ฟอร์มความเข้มข้นของสารละลาย (y) ด้วยการใส่ logarithm แล้วตั้ง
 ชื่อตัว แปรใหม่เป็น y'

ค. จงพล็อตกราฟการกระจายของ x และ y' ได้แนวโน้มของลักษณะความสัมพันธ์
 เป็น แบบเส้นตรงหรือไม่

- ง. งงหาสมการถคถอยเชิงเส้นตรงของ y' ที่ถคถอยบนเวลาที่วัด (x) และประเมิน
 ความ เหมาะสมของตัวแบบนี้
 - จงตรวจสอบข้อตกลงเบื้องต้นของการวิเคราะห์การถคถอยเกี่ยวกับค่าความคลาดเคลื่อน และสรุปผล
 - จงเขียนสมการถดถอยของ y ที่ใช้หน่วยเดิมก่อนการทรานส์ฟอร์ม

การวิเคราะห์การถดถอยแบบไม่เป็นเส้นตรง 309