Physical Chemistry III (728342) Chapter 5: Molecular Symmetry

Piti Treesukol

Molecular Symmetry

- Molecular symmetry:

The classification of any molecule according to its symmetry, correlating to its molecular properties

- Importance of molecular symmetry

Group Theory

- The systematic discussion of symmetry is called Group Theory.
- The symmetry elements of objects
- Symmetry operation: an action that leaves an object looking the same after it has been carried out
- Symmetry element: an element (plane, line, point) that correlates to the specific symmetry operator (unchanged)

Symmetry Operation	Symmetry Elements
Rotation	Line (axis of rotation)
Reflection	Plane
Inversion	Point

Point Group

- Point Group: the classification of objects according to symmetry elements corresponding to operations that leave at least one common point unchanged.
- The more extensive classification, including the translation through space, is called Space Group.

Operations and Symmetry Elements

- Five kinds of symmetry operations in Point Group
- The identity, E
- An n-fold rotation, C_{n}
- A reflection, σ
- An inversion, i
- An n-fold improper rotation, S_{n}

The Identity, E

- The identity operation is doing nothing!
- Every molecule is indistinguishable from it self thus they have the identity element.

An n-fold Rotation, C_{n}

- An n-fold rotation about an n-fold axis of rotation, C_{n}, is a rotation through $360^{\circ} / \mathrm{n}$
- $\mathrm{C}_{1}=\mathrm{E}$
- $C_{2}=180^{\circ}$ rotation
- $\mathrm{C}_{3}=120^{\circ}$ rotation $\left(\mathrm{C}_{3}{ }^{\prime}\right.$ and $\left.\mathrm{C}_{3}{ }^{\prime \prime}\right)$
- $C_{6}=60^{\circ}$ rotation $\left(C_{1}^{1}, C_{1}^{2} \ldots C_{1}^{5}\right)$
- If a molecule possesses several rotational axis, the one with the greatest value of n is called the principal axis (Z).

A Reflection, σ

- A reflection is a mirror plane.
- $\sigma_{v}-$ parallel to the principle axis
- $\sigma_{d}-$ parallel to the principle axis and bisect the angle between two C_{2} axes
- σ_{h} - perpendicular to the principle axis

An Inversion, i

- An inversion through a center of symmetry
- If the origin point is the center of symmetry

$$
\hat{i}(x, y, z)=(-x,-y,-z)
$$

An n-fold Improper Rotation, S_{n}

- An n-fold improper rotation is composed of two successive transformation:
- Rotation through 360° /n
- Reflection through a plane perpendicular to the axis of that rotation.

Example of Acceptable Operator

3)

What operator is applied?

5)

The Symmetry Classification of Molecules

- Molecules with the same list of elements are classified to the same group.
- The groups $\mathrm{C}_{1}, \mathrm{C}_{\mathrm{i}}$ and C_{s} (no rotational axis)
- The groups $C_{n}, C_{n v}$ and $C_{n h}$ (n-fold axis)
- The groups $\mathrm{D}_{\mathrm{n}}, \mathrm{D}_{\mathrm{nh}}$, D_{nd} (n-fold axis and n perpendicular $\mathrm{C}_{2} \mathrm{~s}$)
- The groups S_{n} (n-fold improper axis)
- The cubic groups
- Tetrahedral groups ($\mathrm{T}, \mathrm{T}_{\mathrm{d}}, \mathrm{T}_{\mathrm{h}}$)
- Octahedral groups (O, Oh)
- Icosahedral groups (I)

Example of Character Table

- The characters of all representations are tabulated in a character table.

$\mathbf{C}_{\mathbf{2 v}}$	\mathbf{E}	$\mathbf{C}_{\mathbf{2}}$	$\sigma_{\mathbf{v}}$	$\sigma_{\mathbf{v}}^{\prime}$	$\mathbf{h}=\mathbf{4}$	
$\mathbf{A}_{\mathbf{1}}$	1	1	1	1	Z	z^{2}, y^{2}, x^{2}
$\mathbf{A}_{\mathbf{2}}$	1	1	-1	-1		$x y$
$\mathbf{B}_{\mathbf{1}}$	1	-1	1	-1	X	xz
$\mathbf{B}_{\mathbf{2}}$	1	-1	-1	1	y	yx

Determining the Point Group

- A flowchart for determining the point group of a molecule

16

Character Table

- Character Table is a table that characterizes the different symmetry types possible in the point group.
- The entries in a complete character table are derived by using the formal techniques of group theory.

$\mathbf{C}_{\mathbf{2 v}}$	\mathbf{E}	$\mathbf{C}_{\mathbf{2}}$	$\sigma_{\mathbf{v}}$	$\sigma_{\mathbf{v}}^{\prime}$	$\mathbf{h}=\mathbf{4}$	
$\mathbf{A}_{\mathbf{1}}$	1	1	1	1	Z	$\mathrm{z}^{2}, \mathrm{y}^{2}, \mathrm{x}^{2}$
$\mathbf{A}_{\mathbf{2}}$	1	1	-1	-1		xy
$\mathbf{B}_{\mathbf{1}}$	1	-1	1	-1	X	xz
$\mathbf{B}_{\mathbf{2}}$	1	-1	-1	1	y	yx

Operation \& Matrix

$-\mathrm{c}_{1} 3 \mathrm{p}_{\mathrm{x}}(\mathrm{S})+\mathrm{c}_{2} 2 \mathrm{~s}(\mathrm{O} 1)-\mathrm{c}_{3} 2 \mathrm{~s}(\mathrm{O} 2)$

B1

$\hat{C}_{2}\left(3 p_{s}, 2 s_{O_{1}}, 2 s_{O_{2}}\right)=\left(3 p_{s}, 2 s_{O_{1}}, 2 s_{O_{2}}\right)\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0\end{array}\right]=\left(-3 p_{s},-2 s_{O_{2}},-2 s_{O_{1}}\right)$
$\hat{\sigma}_{v}\left(3 p_{s}, 2 s_{O 1}, 2 s_{O 2}\right)=\left(3 p_{s}, 2 s_{O 1}, 2 s_{O 2}\right)\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left(3 p_{s}, 2 s_{O 1}, 2 s_{O_{2}}\right)$
$\hat{\sigma}_{v}^{\prime}\left(3 p_{s}, 2 s_{O 1}, 2 s_{O 2}\right)=\left(3 p_{s}, 2 s_{O 1}, 2 s_{O 2}\right)\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0\end{array}\right]=\left(-3 p_{s},-2 s_{O 2},-2 s_{O 1}\right)$

Representations and Characters

- All the operators can be written in the matrix form.
- The matrix is called a representation of an operator.
- $\mathrm{C}_{2 \mathrm{v}}$

$$
\begin{array}{ll}
\mathbf{D}(E)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] & \mathbf{D}\left(\sigma_{v}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
\mathbf{D}\left(C_{2}\right)=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right] & \mathbf{D}\left(\sigma_{v}^{\prime}\right)=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right]
\end{array}
$$

- The Matrix representative is called $\Gamma^{(n)}$, where n is the dimention of the matrix
- The character of the representation matrix is the sum of diagonal elements.

$$
\Gamma(E)=3 \quad \Gamma\left(\sigma_{v}\right)=3 \quad \Gamma\left(C_{2}\right)=-1 \quad \Gamma\left(\sigma_{v}^{\prime}\right)=-1
$$

Reduce- and Inreducible Representation

- Inspection of the representatives reveals that they are all of block-diagonal form.
- This shows that the p_{s} is never mixed with the rest.

$$
\mathbf{D}(E)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mathbf{D}\left(\sigma_{v}\right)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mathbf{D}\left(C_{2}\right)=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right] \mathbf{D}\left(\sigma_{v}\right)=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right]
$$

- The 3-D representative matrix $\left(\Gamma^{(3)}\right)$ can be separated into $\left.\Gamma^{(1)}+\Gamma^{(2)}\right)$

$$
\begin{aligned}
& \Gamma^{(1)} \Rightarrow \mathbf{D}(E)=1 \mathbf{D}\left(\sigma_{v}\right)=1 \quad \mathbf{D}\left(C_{2}\right)=1 \quad \mathbf{D}\left(\sigma_{v}^{\prime}\right)=-1 \\
& \Gamma^{(2)} \Rightarrow \mathbf{D}(E)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \mathbf{D}\left(\sigma_{v}\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \mathbf{D}\left(C_{2}\right)=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right] \quad \mathbf{D}\left(\sigma_{v}^{\prime}\right)=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]
\end{aligned}
$$

- According to the matrix representation, $2 \mathrm{~s}(\mathrm{O} 1)$ and $2 \mathrm{~s}(\mathrm{O} 2)$ are mixed together.
- Using the LC, we can write the new basis as $\mathrm{s}_{\mathrm{A}}=2 \mathrm{~s}(\mathrm{O} 1)+2 \mathrm{~s}(\mathrm{O} 2)$ and $\mathrm{s}_{\mathrm{B}}=2 \mathrm{~s}(\mathrm{O} 1)-2 \mathrm{~s}(\mathrm{O} 2)$

$\Gamma^{(\mathbf{1})} \Rightarrow \mathbf{D}(E)=1 \mathbf{D}\left(\sigma_{v}\right)=1 \quad \mathbf{D}\left(C_{2}\right)=1 \quad \mathbf{D}\left(\sigma_{v}^{\prime}\right)=1$

$$
\Gamma^{(\mathbf{1})} \Rightarrow \mathbf{D}(E)=1 \quad \mathbf{D}\left(\sigma_{v}\right)=1 \quad \mathbf{D}\left(C_{2}\right)=-1 \quad \mathbf{D}\left(\sigma_{v}^{\prime}\right)=-1
$$

The Classification of LC of Orbitals

- NH_{3}
- LCAO: $\psi_{1}=\psi_{A}+\psi_{B}+\psi_{C}$

$$
\chi(E)=1 \quad \chi\left(C_{3}\right)=1 \quad \chi\left(\sigma_{v}\right)=1
$$

this orbital is of symmetry species A1 and it contributes to $\mathrm{a}_{1} \mathrm{MO}$ in NH_{3}.

- $\mathrm{NO}_{2} \quad \psi_{1}=\psi_{A}-\psi_{B}$
- LCAO: $\chi(E)=$? $\chi\left(C_{2}\right)=$? $\chi\left(\sigma_{v}\right)=$? $\chi\left(\sigma_{v}\right)=$?

Orbitals with nonzero overalp

- Only orbitals of the same symmetry species may have nonzero overlap, so only orbitalsof the same symmetry species form bonding and antibonding combinations.

Vanishing Integrals \& Orbital Overlap

- The value of integrals and orbital overlap is independent of the orientation of the molecule.

$$
I=\int f_{1} f_{2} d \tau
$$

- I is invariant under any symmetry operation of the molecule, otherwise it must be zero.
- For I not to be zero, the integrand $f_{1} f_{2}$ must have symmetry species A_{1}.
- Example: $f_{1}=\mathrm{s}_{\mathrm{B}}$ and $f_{2}=\mathrm{s}_{\mathrm{C}}$ of NH_{3}

$$
\begin{array}{lrrr}
f_{1}: & 1 & 1 & 1 \\
f_{2}: & 2 & -1 & 1 \\
f_{1} f_{2}: & 2 & -1 & 1
\end{array} \longrightarrow \operatorname{not} \mathrm{~A}_{1} \quad I=\int s_{B} s_{C} d \tau=0
$$

- Problem: $f_{1}=\mathrm{s}_{\mathrm{N}}$ and $f_{2}=\mathrm{s}_{\mathrm{A}}+\mathrm{s}_{\mathrm{B}}+\mathrm{s}_{\mathrm{C}}$ of NH_{3}

$$
I=\int f_{1} f_{2} d \tau=0 \quad ?
$$

Vanishing Integrals and Selectrion Rules

- Integrals of the form $I=\int f_{1} f_{2} f_{3} d \tau \quad$ are common in quantum mechanics.
- For the integral to be nonzero, the product $f_{1} f_{2} f$ must span A_{1} or contain a component that span A_{1}.
- The intensity of line spectra arises from a molecular transition between some initial state i and a final state f and depends on the electric transition dipole moment μ_{fi}.

$$
\mu_{z, f_{i}}=-e \int \psi_{f}^{*} z \psi_{i} d \tau=\langle\mathrm{f}| \mu_{z}|i\rangle
$$

$\mathbf{C}_{2 \mathbf{v}}$	\mathbf{E}	\mathbf{C}_{2}	$\sigma_{\mathbf{v}}$	$\sigma_{\mathbf{v}}{ }^{\prime}$
\mathbf{B}_{1}	1	-1	1	-1
\mathbf{z}	1	1	1	1
$\mathbf{A}_{\mathbf{1}}$	1	1	1	1
$\mathbf{A}_{1} \mathbf{z B}_{\mathbf{1}}$	1	-1	1	1

$C_{2 r}$		C_{2}	(. (xz)	σ_{v} (yz)		
A_{1}		1	1		=	x^{2}, y^{2}, z^{2}
A_{2}	1	1	-1	-1	R_{2}	xy
B_{1}	1	-1	1	-1	x, R_{y}	$x z$
B_{2}	1	-1	-1		y, R_{s}	$y z$

- In many cases, the product of functions f_{1} and f_{2} spans a sum of irreducible representations.
- In these cases, we have to decompose the reducible representation into irreducible representations

$\mathbf{C}_{\mathbf{2}}$	\mathbf{E}	$\mathbf{C}_{\mathbf{2}}$	$\sigma_{\mathbf{v}}$	$\sigma_{\mathbf{v}}{ }^{\mathbf{r}}$
$\mathbf{A}_{\mathbf{2}}$	1	1	-1	-1
$\mathbf{B}_{\mathbf{1}}$	1	-1	1	-1
$\mathbf{A}_{\mathbf{2}}+\mathbf{B}_{\mathbf{1}}$	2	0	0	-2

AO of $\mathrm{H}_{2} \mathrm{O}$

$+$

MO of $\mathrm{H}_{2} \mathrm{O}$

Symmetry-adapted Linear Combinations

- Symmetry-adapted linear combination (SALC) are the building blocks of LCAO-MO
- To construct the SALC from basis:

1. Construct a table showing the effect of each operation on each orbtial of the original basis.
2. To generate the combination of a specified symmetry species, take each column in turn and:
a) Multiply each member of the column by the character of the corresponding operation.
b) Add together all the orbitals in each column with the factors as determined in a).
c) Divide the sum by the order of the group.

Example of building SALC

- s-orbitals of NH_{3}
- Original basis are $s_{N}, s_{A}, s_{B}, s_{C}$

NH_{3}	Original basis			
	S_{N}	S_{A}	S_{B}	s_{C}
E	S_{N}	S_{A}	S_{B}	s_{C}
$\mathrm{C}_{3}{ }^{+}$	S_{N}	S_{B}	S_{C}	S_{A}
$\mathrm{C}_{3}{ }^{-}$	S_{N}	S_{C}	S_{A}	S_{B}
σ_{v}	s_{N}	S_{A}	S_{C}	S_{B}
$\sigma_{v}{ }^{\prime}$	S_{N}	S_{B}	S_{A}	S_{C}
$\sigma_{v}{ }^{\prime}$	S_{N}	s_{C}	S_{B}	S_{A}

$C_{3 v}$	E	$2 C_{3}$	$3 \sigma_{v}$
$\mathrm{~A}_{1}$	1	1	1
$\mathrm{~A}_{2}$	1	1	-1
E	2	-1	0

$$
\psi_{2}=\psi_{3}=\psi_{4}=\frac{1}{6}\left(s_{A}+s_{B}+s_{C}+s_{A}+s_{B}+s_{C}\right)=\frac{1}{3}\left(s_{A}+s_{B}+s_{C}\right)
$$

$$
\Psi=c_{1} \psi_{1}+c_{2} \psi_{2}+c_{3} \psi_{3}+c_{4} \psi_{4}=c_{N} s_{N}+c_{H} s_{H}
$$

$$
\text { when } s_{H}=\left(s_{A}+s_{B}+s_{C}\right)
$$

