ACE 261 Fall 2002 Prof. Katchova

Lecture 13

Analysis of Variance and Experimental Design

Outline

- ANOVA (Analysis of Variance)
- · Experimental design
 - Completely randomized design
 - Randomized block design
 - Factorial experiments

Analysis of Variance

- <u>Analysis of Variance</u> (ANOVA) can be used to test for the equality of three or more population means.
 - $H_0: \ \mu_1 = \mu_2 = \mu_3 = \cdots = \mu_k$
 - $H_{\rm a}$: Not all population means are equal

3

5

• Rejecting *H*₀ means that at least two population means have different values. But we cannot conclude that all means are different.

ANOVA problem

2

 Question: Are average salaries the same or different in America, Europe, and Asia?
 H₀: μ₁ = μ₂ = μ₃ (average salaries are equal)
 H_a: Not all salaries are equal

Definitions

- <u>Response variable</u>: *dependent variable*, the one that we would like to explain
 - salary
- <u>Factor</u>: *independent variable* that helps explain differences in the dependent variable
- One factor: continent
- Two factors: continent and education
- Treatments: specific levels of the factor
 - Three treatments: America, Europe, and Asia
 Two treatments: Masters and Ph.D.

Salaries (in thousand dollars)

	America	Europe	Asia	
	30	27	15	
	34	24	20	
	26	30	20	
	30	27	25	
Mean	30	27	20	
Variance	10.67	6	16.67	

6

ANOVA calculations

- Overall mean = mean of means =(30+27+20)/3=25.67
- Between-treatments variance = variance of the means = s_{xbar} = = [(30-25.67)² + (27-25.67)² + (20-25.67)²]/(3-1) = 26.33
- MSTR (Mean square due to treatments) = $n*s_{xbar} = 4*26.33$ =105.33
- MSE (Mean square due to error) = within-treatments variance = mean of the variances = (10.67+6+16.67)/3= 11.11

ANOVA calculations (continued)

- F=MSTR/MSE=105.33/11.11=9.48
- Degrees of freedom for the numerator = # treatments - 1 = k - 1 = 2
- Degrees of freedom for the denominator = # observations # treatments = $n_T k = 12 3 = 9$
- Critical value = $F_{0.05} = 4.26$
- Reject H₀

9

Conclusion: not all countries have the same average salary

SUMMARY						
Groups	Count	Sum	Average	Variance		
America	4	120	30	10.66667		
Europe	4	108	27	6		
Asia	4	80	20	16.66667		
ANOVA						
ANOVA Source of	22	đf	MS	F	P. valua	Forit
ANOVA Source of Variation	<u>SS</u> 210.6667	df 2	MS	F 9.48	P-value	F crit
ANOVA Source of Variation Between Groups Within Groups	<i>SS</i> 210.6667 100	<i>df</i> 2 9	MS 105.3333 11.11111	<i>F</i> 9.48	<i>P-value</i> 0.006091	<i>F crit</i> 4.25649

	The	ANOV	A Table	
Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Treatment Error Total	SSTR SSE SST	$k - 1$ $n_{\rm T} - k$ $n_{\rm T} - 1$	MSTR MSE	MSTR/MSE
SST=SSTR+5 sum of squ F=MSTR/MS	SSE (total sum uares due to e SE = mean squ	n of squares = sur rror) uare due to treatm	m of squares du ent / mean squa	e to treatments + are due to error
				12

10

New ANOVA example: Rent for leased land in Illinois by type of lease

	Cash rent	Share rent	Cash/share rent
Mean	100	105	95
Variance	10	5	15
Number of farmers	5	5	5

New ANOVA example

- k = number of treatments =
- n = number of observations in a treatment =
- $n_T = \text{total number of observations} =$
- Overall mean =
- MSTR = n*(variance of means) =
- MSE = mean of variances =
- F=MSTR/MSE=
- F_{critical} =

13

14

16

Notes

- ANOVA is about testing equalities of means. However, we use variances to tests these equalities of means.
- ANOVA with two treatments is the same as the test for differences in means in chapter 10.
- ANOVA assumes that each sample is normally distributed and has equal variances.
- F = MSTR/MSE = (#observations in a treatment)*(variance of means)/(mean of variances)

Multiple Comparison Procedures

- Suppose that analysis of variance has provided statistical evidence to reject the null hypothesis of equal population means.
- Fisher's least significance difference (LSD) procedure can be used to determine where the differences occur.

Experimental Design

- Statistical studies can be classified as being either experimental or observational.
- In an <u>observational study</u>, no attempt is made to control the factors.
 - Example: survey of food preferences
- In an <u>experimental study</u>, one or more factors are controlled so that data can be obtained about how the factors influence the variables of interest.
 - Example: conducting a food tasting experiment
- <u>Cause-and-effect relationships</u> are easier to establish in experimental studies than in observational studies.

17

15

Dependencies of experimental designs Completely randomized designs Assign 4 people to go to America, 4 to Europe, and 4 to Asia and observe their salaries. Problem: people have different education Mendomized block design Assign the same 4 people to go first to America, then to Europe, and then to Asia and measure their salaries. This design controls for different education because it's the same person (persons are the blocks) Metotral experiments To to factors: measure not only the effect of different continents on salaries, but also the effect of education on salaries.

America	Europe	Asia	
30	27	15	_
34	24	20	_
26	30	20	_
30	27	25	

	America	Europe	Asia	
Person 1	30	27	15	
Person 2	34	24	20	
Person 3	26	30	20	
Person 4	30	27	25	

Source of Variation	SS	df	MS	F	P-value	F crit
Rows (Blocks)	17.33333	3	5.777778	0.419355	0.745885	4.757055
Columns (Treatments)	210.6667	2	105.3333	7.645161	0.022382	5.143249
Error	82.66667	6	13.77778		\smile	
Total	310.6667	11				
SST=SSBI -	-SSTB+S	SE				
551-55BL	551115	SE				

	America	Europe	Asia
Ph.D.	30	27	15
	34	24	20
Masters	26	30	20
	30	27	25

Source of Variation	SS	df	MS	F	P-value	F crit
Sample (factor A: continent)	5.333333	1	5.333333	0.64	0.45421	3.987374
Columns (Factor B: education)	210.6667	2	105.3333	12.64	0.007058	5.143249
Interaction (Factor A and B)	44.66667	2	22.33333	2.68	0.147339	5.143249
Within (Error)	50	6	8.333333			
Total	310.6667	11				
SST=SSA+SSI	3+SSAB	+SS	E			