ACE 261
Fall 2002
Prof. Katchova

Lecture 5

Discrete Probability Distributions

## Random variables

- A random variable is a numerical description of the outcome of an experiment.
- A random variable can be classified as being either discrete or continuous depending on the numerical values it assumes.


## Outline

- Random variables
- Discrete probability distributions
- Expected value and variance
- Binomial probability distribution
- Poisson probability distribution
- Hypergeometric probability distribution


## Continuous random variable

- A continuous random variable may assume any numerical value in an interval or collection of intervals.
- Time, weight, distance, and temperature
$-x=$ time between TV sales in minutes
$x$ can take continuous values more than or equal to zero


## Discrete random variables

- A discrete random variable may assume either a finite number of values or an infinite sequence of values.
- Discrete random variable with a finite number of values $x=$ number of TV sets sold at the store in one day $x$ can take on 5 values $(0,1,2,3,4)$
- Discrete random variable with an infinite sequence of values
$x=$ number of customers arriving in one week
$x$ can take on the values $0,1,2, \ldots$


## Discrete probability distributions

- The probability distribution for a random variable describes how probabilities are distributed over the values of the random variable.
- We can describe a discrete probability distribution with a table, graph, or equation.


## Discrete probability functions

- The probability distribution is defined by a probability function, denoted by $f(x)$, which provides the probability for each value of the random variable.
- The required conditions for a discrete probability function are:

$$
\begin{aligned}
f(x) & \geq 0 \\
\Sigma f(x) & =1
\end{aligned}
$$

## Discrete probability distribution:

 tabular representationUsing past data on TV sales (below left), a tabular representation of the probability distribution for TV sales (below right) was developed.

| Units Sold | Number <br> of Days | $\underline{x}$ | $\underline{f(x)}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 80 | 0 | .40 |  |
| 1 | 50 | 1 | .25 |  |
| 2 | 40 | 2 | .20 |  |
| 3 | 10 | 3 | .05 |  |
| 4 | $\underline{20}$ | 4 | $\underline{.10}$ | 8 |
|  | 200 |  | 1.00 | 8 |

## Discrete uniform probability distribution

- The discrete uniform probability distribution is the simplest example of a discrete probability distribution given by a formula.
- The discrete uniform probability function is

$$
f(x)=1 / n
$$

where $n=$ the number of values the random variable may assume.

- Note that the values of the random variable are equally likely.


## Expected Value and Variance

- The expected value, or mean, of a random variable is a measure of its central location.
- Expected value of a discrete random variable:

$$
E(x)=\mu=\Sigma x f(x)
$$

- The variance summarizes the variability in the values of a random variable.
- Variance of a discrete random variable:

$$
\operatorname{Var}(x)=\sigma^{2}=\Sigma(x-\mu)^{2} f(x)
$$

- The standard deviation, $\sigma$, is defined as the positive square root of the variance.

Variance and standard deviation of a discrete random variable

| $x$ | $x-\mu$ | $(x-\mu)^{2}$ | $f(x)$ | $(x-\mu)^{2} f(x)$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | -12 | 1.44 | .40 | .576 |
| 1 | -02 | 0.04 | .25 | .010 |
| 2 | 0.8 | 0.64 | .20 | .128 |
| 3 | 1.8 | 3.24 | .05 | .162 |
| 4 | 2.8 | 7.84 | .10 | .784 |
|  |  |  |  | $1.660=\sigma^{2}$ |

The variance of daily sales is 1.66 TV sets squared. The standard deviation of sales is 1.2884 TV sets.

## Binomial probability distribution

- Binomial probability function

$$
f(x)=.^{n!} p^{x}(1-p)^{(n-x)}
$$

where:
$f(x)=$ the probability of $x$ successes in $n$ trials
$n=$ the number of trials
$p=$ the probability of success on any one trial

Binomial experiment: tossing a coin binomial probability values from a table

| $x$ | $f(x)$ |
| :---: | :---: |
| 0 | 0.0312 |
| 1 | 0.1562 |
| 2 | 0.3125 |
| 3 | 0.3125 |
| 4 | 0.1562 |
| 5 | 0.0312 |

Binomial experiment: tossing a coin theoretical values


Binomial experiment: tossing a coin empirical values


## Binomial probability distribution example

- On the basis of past experience, management has seen a turnover of $10 \%$ of the hourly employees annually. Thus, for any hourly employees chosen at random, management estimates a probability of 0.1 that the person will not be with the company next year.
- Choosing 3 hourly employees a random, what is the probability that 1 of them will leave the company this year?
- $p=, n=, x=$

Using the tables of binomial probabilities

|  |  | $\boldsymbol{c}$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\boldsymbol{n}$ | $\boldsymbol{x}$ | .10 | .15 | .20 | .25 | .30 | .35 | .40 | .45 |
| 3 | 0 | .7290 | .6141 | .5120 | .4219 | .3430 | .2746 | .2160 | .1664 | .1250 |
|  | 1 | .2430 | .3251 | .3840 | .4219 | .4410 | .4436 | .4320 | .4084 | .3750 |
|  | 2 | .0270 | .0574 | .0960 | .1406 | .1890 | .2389 | .2880 | .3341 | .3750 |
|  | 3 | .0010 | .0034 | .0080 | .0156 | .0270 | .0429 | .0640 | .0911 | .1250 |

## Using a tree diagram



## Binomial probability distribution

- Expected value

$$
E(x)=\mu=n p
$$

- Variance

$$
\operatorname{Var}(x)=\sigma^{2}=n p(1-p)
$$

- Standard deviation

$$
\mathrm{SD}(x)=\sigma=\sqrt{n p(1-p)}
$$

## Binomial probability distribution example

- Expected Value
$E(x)=\mu=3(.1)=.3$ employees out of 3
- Variance

$$
\operatorname{Var}(\mathrm{x})=\sigma^{2}=3(.1)(.9)=.27
$$

- Standard Deviation

$$
\mathrm{SD}(x)=\sigma=\sqrt{3(.1)(.9)}=.52 \mathrm{employees}
$$

## Poisson probability distribution

- Poisson probability function

$$
f(x)=\frac{\mu^{x} e^{-\mu}}{x!}
$$

where:
$f(x)=$ probability of $x$ occurrences in an interval
$\mu=$ mean number of occurrences in an interval
$e=2.71828$

## Poisson probability distribution example

- Patients arrive at the emergency room of Carl Clinic at the average rate of 6 per hour on weekend evenings. What is the probability of 4 arrivals in 30 minutes on a weekend evening?

$$
\begin{gathered}
\mu=6 / \text { hour }=3 / \text { half hour, } x=4 \\
f(4)=3^{3^{4}(2.71828)^{-3}}=.1680
\end{gathered}
$$

## Poisson probability distribution

- Properties of a Poisson experiment
- The probability of an occurrence is the same for any two intervals of equal length.
- The occurrence or nonoccurrence in any interval is independent of the occurrence or nonoccurrence in any other interval.


## Poisson probability distribution

- To solve a problem, you must figure out what are $\mu=$ mean number of occurrences in an interval
- The time or space intervals must match with the interval that we are interested in.
$x=$ the value of the discrete random variable that we are interested in.

Using the tables of Poisson probabilities

|  | $\mu$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{x}$ | 2.1 | 2.2 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 | 2.8 | 2.9 | 3.0 |
| 0 | .1225 | .1108 | .1003 | .0907 | .0821 | .0743 | .0672 | .0608 | .0550 | .0498 |
| 1 | .2572 | .2438 | .2306 | .2177 | .2052 | .1931 | .1815 | .1703 | .1596 | .1494 |
| 2 | .2700 | .2681 | .2652 | .2613 | .2565 | .2510 | .2450 | .2384 | .2314 | .2240 |
| 3 | .1890 | .1966 | .2033 | .2090 | .2138 | .2176 | .2205 | .2225 | .2237 | .2240 |
| 4 | .0992 | .1082 | .1169 | .1254 | .1336 | .1414 | .1488 | .1557 | .1622 | .1680 |
| 5 | .0417 | .0476 | .0538 | .0602 | .0668 | .0735 | .0804 | .0872 | .0940 | .1008 |
| 6 | .0146 | .0174 | .0206 | .0241 | .0278 | .0319 | .0362 | .0407 | .0455 | .0504 |
| 7 | .0044 | .0055 | .0068 | .0083 | .0099 | .0118 | .0139 | .0163 | .0188 | .0216 |
| 8 | .0011 | .0015 | .0019 | .0025 | .0031 | .0038 | .0047 | .0057 | .0068 | .0081 |

## Hypergeometric Probability <br> Distribution

- The hypergeometric distribution is closely related to the binomial distribution.
- With the hypergeometric distribution, the trials are not independent, and the probability of success changes from trial to trial.


## Hypergeometric probability distribution example

- Bob has removed two dead batteries from a flashlight and inadvertently mingled them with the two good batteries he intended as replacements. The four batteries look identical.
- Bob now randomly selects two of the four batteries. What is the probability he selects the two good batteries?

Hypergeometric probability distribution example
$f(x)=\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}=\frac{\binom{2}{2}\binom{2}{0}}{\binom{4}{2}}=\frac{\binom{2!}{2 \cdot 0!}\binom{2!}{0!2!}}{\binom{4!}{2!2!}}=\frac{1}{6}=.167$
$x=2=$ number of good batteries selected
$r=2=$ number of good batteries in total
$n=2=$ number of batteries selected
$N=4=$ number of batteries in total

## Hypergeometric probability distribution

- Hypergeometric Probability Function

$$
f(x)=\frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}} \quad \text { for } 0 \leq x \leq r
$$

where: $\quad f(x)=$ probability of $x$ successes in $n$ trials $n=$ number of trials
$N=$ number of elements in the population
$r=$ number of elements in the population labeled success ${ }_{32}$

Hypergeometric probability distribution example

- Probability that the first battery will be good is $=2 / 4=1 / 2$
- Given that the first battery was good, the probability that the second battery will be good is $=1 / 3$
- Probability that both batteries will be good $=(1 / 2) *(1 / 3)=1 / 6$

