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Lecture 10

Statistical Inference About Means and 
Proportions with Two Populations
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Comparisons Involving Means: 
Outline

• Interval Estimation and Hypothesis Testing of 
Differences in Means
– For independent samples
– For matched samples

• Inferences about the Difference between the 
Proportions
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What problems are we doing to solve?

• Interval estimation
– Lecture 8:  What is the interval estimate mean height of 

people?
– This lecture: What is the interval estimate of the difference

of mean heights of men and women?

• Hypothesis testing
– Lecture 9: Is the average height of people 5’7”?
– This lecture: Is the average height of men and women 

different?
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Interval Estimation

• Lecture 8: Interval estimation for a mean

µ = 

• This lecture: Interval estimation for differences in 
means
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Hypothesis Testing

• Lecture 8: Hypothesis Testing for Means

• This lecture: Hypothesis Testing for Differences 
between Means
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• Interval Estimate with σ1 and σ2 Known

• Interval Estimate with σ1 and σ2 Unknown

(1 - α) is the confidence coefficient

Interval Estimate of µ1 - µ2:
Large-Sample Case (n1 > 30 and n2 > 30)
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Hypothesis Tests About the Difference Between the 
Means of Two Populations:  Independent Samples

• Hypotheses:
H0:  µ1 - µ2 < 0       H0:  µ1 - µ2 > 0       H0:  µ1 - µ2 = 0
Ha:  µ1 - µ2 > 0       Ha:  µ1 - µ2 < 0       Ha:  µ1 - µ2 ≠ 0

• Test Statistics
Large-Sample Small-Sample

• Reject the null hypothesis if the test statistic is in the 
rejection region.
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Interval Estimation of the Difference 
between Means

• Question:  What is the interval estimate of the 
difference between the means of these two 
populations?

Sample #1   Sample #2
Sample Size n1 = 120 balls n2 = 80 balls
Mean x1

bar = 235 yards         x2
bar = 218 yards

Standard Dev. σ1 = 15 yards σ2 = 20 yards
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• Solution:
• The point estimate of the difference is 

x1
bar – x2

bar = 
• The interval estimate of the difference is 

= 17 + 5.14  or  11.86 yards to 22.14 yards.
We are 95% confident that the difference between 
the means of these two populations is in the 
interval of 11.86 to 22.14 yards.
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Interval Estimation of the Difference 
between Means
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• Question: Can we conclude, using a .01 level of 
significance, that the mean driving distance for the 
first company’s balls is greater than the mean 
driving distance of the second company’s balls?

• Hypothesis
H0:  µ1 - µ2 < 0
Ha:  µ1 - µ2 > 0

Hypothesis Tests About the Difference Between the 
Means of Two Populations:  Large-Sample Case
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• Reject H0 if z >  z0.01 = 2.33

• Reject H0.  We are at least 99% confident that the 
mean driving distance of the first company’s golf 
balls is greater than the mean driving distance of 
the second company’s golf balls.
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Hypothesis Tests About the Difference Between the Means of 
Two Populations:  Large-Sample Case
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Interval Estimate of µ1 - µ2:
Small-Sample Case (n1 < 30 and/or n2 < 30)

• If σ 2 is known, we use the same method as the 
large sample method (i.e. the standard normal 
distribution)

where:
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− ± −α σ/x x z x x1 2 2 1 2
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Interval Estimate of µ1 - µ2:
Small-Sample Case (n1 < 30 and/or n2 < 30)

• If σ 2 is unknown, then we estimate s2 and use the t-
distribution.

where:

Note that s2 is the weighted average of the two sample 
variances s1

2 and s2
2 with weights (n1-1) and (n2-1)
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Assumptions made 
in the small sample case

• Both populations have normal distributions.
• The variances of the population are equal 

(σ1
2 =σ2

2 = σ2 )
• If sample sizes are equal (n1 = n2), then results are 

acceptable even if variances are not equal.
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Interval Estimation of the Differences 
between Means: Small Sample Case
• Question: Two types of cars are being tested to compare 

miles-per-gallon (mpg) performance. What is the interval 
estimate of the population difference?

Sample #1   Sample #2
Ford Nissan

Sample Size n1 = 12 cars n2 = 8 cars
Mean x1

bar = 29.8 mpg    x2
bar = 27.3 mpg

Standard Deviation s1 = 2.56 mpg s2 = 1.81 mpg
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• Point estimate of µ1 - µ2 =  x1
bar – x2

bar = 29.8 -
27.3 = 2.5 mpg

• Since it’s small sample case, use the t distribution 
with n1 + n2 - 2 = 18 degrees of freedom and find 
that  t.025 = 2.101.

• Estimate s2 as the weighted average of two sample 
variances

Interval Estimation of the Differences 
between Means: Small Sample Case
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• Substitute results in the formula for the interval 
estimate

= 2.5 + 2.2  or  .3 to 4.7 miles per gallon.
We are 95% confident that the difference between 
the mean mpg ratings of the two car types is from 
.3 to 4.7 mpg.

x x t s1 2 025
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Interval Estimation of the Differences 
between Means: Small Sample Case
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• Question: Can we conclude, using a .05 level of 
significance, that the miles-per-gallon (mpg) performance 
for Ford cars is greater than the miles-per-gallon 
performance for Nissan cars?

µ1 = mean mpg for the population of Ford cars
µ2 = mean mpg for the population of Nissan cars

H0:  µ1 - µ2 < 0
Ha:  µ1 - µ2 > 0

Hypothesis Tests About the Difference Between the Means of 
Two Populations:  Small -Sample Case
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Hypothesis Tests About the Difference Between the 
Means of Two Populations:  Small -Sample Case

• Reject H0 if t > 1.734   (a = .05, d.f. = 18)
• Test statistic:

where:
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Inference About the Difference Between the Means 
of Two Populations:  Matched Samples

• With a matched-sample design each sampled item 
provides a pair of data values.

• This design often leads to a smaller sampling error 
than the independent-sample design because 
variation between sampled items is eliminated as a 
source of sampling error.

• We consider only the differences for each pair dbar

and the analysis is the same as in chapter 9, when 
dbar replaces xbar in all formulas.
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Delivery Time (Hours)
District Office UPX INTEX Difference
Seattle 32 25 7
Los Angeles 30 24 6
Boston 19 15 4
Cleveland 16 15 1
New York 15 13 2
Houston 18 15 3
Atlanta 14 15 -1
St. Louis 10 8 2
Milwaukee 7 9 -2
Denver 16 11 5

Matched Sample Example
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• Do the data indicate a difference in mean delivery 
times for the two services, at the 5% significance 
level?

• Let  µd = the mean of the difference values for the 
two delivery services for the population of district 
offices
– Hypothesis H0: µd = 0,   Ha: µd ≠ 0
– Rejection rule: Assuming the population of difference 

values is approximately normally distributed, the t
distribution with n - 1 degrees of freedom applies.  
With α = .05, t.025 = 2.262 (9 degrees of freedom).

Reject H0 if t < -2.262 or if t > 2.262

Matched Sample Example
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– Conclusion: reject H0. 
There is a significant difference between the mean 
delivery times for the two services. 
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• Expected Value

• Standard Deviation

E p p p p( )1 2 1 2− = −E p p p p( )1 2 1 2− = −

σ p p
p p
n

p p
n1 2

1 1

1

2 2

2

1 1
− =

−
+

−( ) ( )σ p p
p p
n

p p
n1 2

1 1

1

2 2

2

1 1
− =

−
+

−( ) ( )

Proportions: 
Sampling Distribution of p1

bar – p2
bar

s p p
n

p p
np p1 2

1 1

1

2 2

2

1 1
− =

−
+

−( ) ( )s p p
n

p p
np p1 2

1 1

1

2 2

2

1 1
− =

−
+

−( ) ( )

26

Interval Estimation of p1 - p2

p p z p p1 2 2 1 2
− ± −α σ/p p z p p1 2 2 1 2
− ± −α σ/

• Distribution Form
If the sample sizes are large (n1p1, n1(1 - p1), n2p2,
and n2(1 - p2) are all greater than or equal to 5), the 
sampling distribution of p1

bar – p2
bar can be 

approximated by a normal probability distribution. 
• The interval estimate is
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Example
• Before an advertising campaign, 60 of the 150 

households surveyed said that they will buy a new 
product.  After the advertising campaign, 120 of 
250 households said that they will buy the 
product.

• Do the data support the position that the 
advertising campaign increased customers interest 
in buying the product?

H0:  p1 - p2 ≤ 0
Ha:  p1 - p2 > 0

Where sample 1 is after the campaign and sample 2 is 
before the campaign. 28

Hypothesis Tests about p1 - p2

• Test statistic

where:

• Reject H0 if z > 1.645
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Hypothesis Testing Calculations

• Since z =1.56<1.645, we do not reject H0.  

p = +
= =

250 48 150 40 180 45(. ) (. ) .

sp p1 2 45 55 1 1 0514+( )( )

z = − −
= =

(. . ) . .48 40 0 08 1 56
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Interval Estimate for Proportions Differences
• Interval estimate for α = .05, z.025 = 1.96:

.08 + 1.96(.0510)
.08 + .10

or   -.02 to +.18
• At a 95% confidence level, the interval estimate of the 

difference between the proportion of households aware of 
the client’s product before and after the new advertising 
campaign is -.02 to +.18.

. . . . (. ) . (. )48 40 1 96 48 52 40 60
− ± +


