ACE 261 Fall 2002 Prof. Katchova

Lecture 14

Simple Linear Regression

• What is the studied for	Quest e relationship bet the exam and hi	tion tween the time a s/her points on e	student xam 1?
	Hours studied	Points on exam 1	
	5	190	
	8	200	
	12	210	
	15	240	
I			2

New questions

- Can I predict if a student studied 5 hours, how much he/she would score?
- For each hour of study, a student's grade increases by how many points?
- If the increase is 4 points for each hour studied, is that a significant increase?

5

More definitions

- Be careful! Regression analysis does not establish a causeand-effect relationship, just that there is a relationship.
 - For example: students who study more have higher score, but it is also true that students who are taller also have higher score.
 - The cause-and-effect must be established with a theoretical or logical reason.
- <u>Simple linear regression model</u> is a regression model where the relationship between the dependent and *one* independent variable is approximated by *a straight line*.
- <u>Multiple linear regression model</u> is a regression model where the relationship between the dependent and two or more independent variables is approximated by a straight line.

A potential answer

- Suppose I tell you that if a student studies x hours, he will score y points based on the following equation.
- Predicted points = 160 + 4*(Hours studied)

Hours studied	Observed points	Predicted points	
5	190		
8	200		
12	210		
15	240		
	I	1	1

Least squares estimates

- The slope of the regression line is
- $b_1 = cov(x,y)/var(x) = \Sigma (x \ bar)(y \ bar)/\Sigma(x \ bar)^2$
- The intercept of the regression line is
- $b_0 = ybar b_1 xbar$
- Find b₁ and b₀ using the least squares method.

Calculations							
studied	exam 1	x _i -x	y _i -y	$(\mathbf{x}_i - \mathbf{x})^{*}$ $(\mathbf{v}_i - \mathbf{v})$	(x _i -x)-		
(x _i)	(y _i)			0157			
5	190						
8	200						
12	210						
15	240						
					14		

Least squares estimates

- $b_1 = \Sigma (x-xbar)(y-ybar)/\Sigma(x-xbar)^2 =$
- $b_0 = ybar b_1 xbar =$
- · The estimated regression equations is:
- yhat = 163.45 + 4.66 x
- Interpretation: we predict that a student who studied 0 hours will score 163.45, and 4.66 points more for each additional hour of study.
- Given x=5, the predicted score = yhat =

15

13

Determining goodness of fit

- How well does the model fit the data?
- SST=SSR+SSE
- sum of squares total = sum of squares regression + sum of squares error.
 - $\Sigma (y ybar)^2 = \Sigma (yhat ybar)^2 + \Sigma (y yhat)^2$
- Total variation = explained variation by the regression + unexplained variation associated with error

Coefficient of determination

- <u>Coefficient of determination</u> (R²) provides a measure of the goodness of fit for the estimated regression equation.
- $R^2 = SSR/SST = 1 SSE/SST$
- Values of R² close to 1 indicate perfect fit, values close to zero indicate poor fit. R² of more than 0.25 is considered good in the ag economics field.
- If SSE =143.1034 and SST =1400, R²=
- This means that 89.78% of the variation is explained by the regression and the rest of the variation is due to error.

17

Correlation coefficient r_{xv} = (sign of b₁) *sqrt (R²) =

- Goodness of fit is a better measure than the correlation coefficient because it can be applied when:
 - there are more independent variables
 - the relationship between the dependent and independent variables is not linear.

18

16

Testing for significance

- Is the increase of b₁=4.66 points for each hour studied, significant or not?
- In other words, is the slope β_1 = zero? If the slope is zero then y and x are not related (y does not depend on x).
- $H_0: \beta_1 = 0$ and $H_a: \beta_1 \neq 0$
- Two tests
 - t-test for a coefficient significance ($\beta_1=0$ or not)
 - F-test for an overall significance (are y and x related? Are all coefficients jointly equal to zero?)
 - If one independent variable, these two tests have the same results, with more independent variables, the tests have different results.

19

21

F-test for overall significance of all coefficients

- $H_0: \beta_1 = 0$ and $H_a: \beta_1 \neq 0$
- SST=SSR+SSE
 Total variation = explained variation by the regression + unexplained
 variation associated with error
- F = (SSR/p)/[SSE/(n-p-1)] = MSR/MSE
- p is the number of independent variables, n is the number of observations
 If the error explains a lot of the variation in score and the regression doesn't, then the regression is not significant, i.e., β₁ = 0

20

ANOVA table						
Source	Sum of Squares	Degrees of Freedom	Mean Square	F		
Regression	SSR= $\sum(yhat-ybar)^2$	p = number of independent variables	MSR=SSR/p	F=MSR/MSE		
Error	SSE= $\sum(y-yhat)^2$	n-p-1	MSE= SSE/(n-p-1)			
Total	$SST = \sum (y-ybar)^2$	n-1				

• SST=SSR+SSE

• Total variation = explained variation by the regression + unexplained variation associated with error

ANOVA					
	df	SS	MS	F	Significance F
Regression	1	1256.897	1256.897	17.56627	0.052486
Residual (Error)	2	143.1034	71.55172		
Total	3	1400			

t-test for a coefficient significance • $H_0: \beta_1 = 0$ and $H_a: \beta_1 \neq 0$ • $t = (b_1 - \beta_1) / s_{b1}$ with d.f.= n-p-1 $s_{b1} = sqrt(MSE)/ sqrt [\Sigma(x-xbar)^2]$ Since the p-value for time studied is 0.0525 > 0.05 we accept the null hypothesis, there is no relation between time studied and points scored. Standard Coefficients Errort Stat P-value Intercept 163 4483 11 88499 13 7525 0.005246 4.655172 Time studied 1.110698 4.191213 0.052486 23

Model Assumptions

- The error e is a random variable with mean of zero.
- The variance of e , denoted by $\sigma^2,$ is the same for all values of the independent variable.
- The values of e are independent.
- The error e is a normally distributed random variable.

Detecting outliers

- <u>An outlier</u> is an observation that has unusually large or small values. Solutions?
- Maybe a mistake was made correct it
- Maybe the model doesn't fit well
- May just happened by chance?

26

Detecting influential observations

- <u>Influential observation</u> is an observation with extreme values for the independent variable. An influential observation has a high leverage.
- The leverage is determined by how far the values of the independent variables are from their means.
- Solutions?
 - Run the regression without the influential observation and see if the results change.

27

25

Regression of price of stock on number of stocks sold						
Regression S	Statistics					
Multiple R	0.862428					
R Square	0.743781					
Adjusted R Square	0.711754					
Standard Error	1.419338					
Observations	10					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	46.78384	46.78384	23.22333	0.001323	
Residual	8	16.11616	2.01452			
Total	9	62.9				
						-
		Standard				
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	9.264947	1.099136	8.429297	2.99E-05	6.730332	11.79956
Shares	0.710515	0.147438	4.819059	0.001323	0.370521	1.050369