ACE 261
Fall 2002
Prof. Katchova

Lecture 14
Simple Linear Regression

Question

- What is the relationship between the time a student studied for the exam and his/her points on exam 1?

Hours studied	Points on exam 1
5	190
8	200
12	210
15	240

Answer

- We already know from chapters 2 and 3:
- We can look at the scatter diagram and the correlation coefficient.
- Conclusion: correlation coefficient $=95 \%$, therefore there is \qquad relationship.

New questions

- Can I predict if a student studied 5 hours, how much he/she would score?
- For each hour of study, a student's grade increases by how many points?
- If the increase is 4 points for each hour studied, is that a significant increase?

Definitions

- Dependent variable is the variable being predicted or explained. Usually denoted by y.
- Example: y=exam points
- Independent variables are the variables being used to predict or explain the dependent variable. Usually denoted by $\mathrm{x}_{1}, \mathrm{x}_{2}$, etc.
- Example: $\mathrm{x}=$ hours studied
- Regression analysis (model) is used to predict the value of the dependent variable based on the values of the independent variables.
- Given that someone studied 5 hours, how much would he/she score?

More definitions

- Be careful! Regression analysis does not establish a cause-and-effect relationship, just that there is a relationship.
- For example: students who study more have higher score, but it is also true that students who are taller also have higher score.
- The cause-and-effect must be established with a theoretical or logical reason.
- Simple linear regression model is a regression model where the relationship between the dependent and one independent variable is approximated by a straight line.
- Multiple linear regression model is a regression model where the relationship between the dependent and two or more independent variables is approximated by a straight line.

A potential answer

- Suppose I tell you that if a student studies x hours, he will score y points based on the following equation.
- Predicted points $=160+4^{*}($ Hours studied $)$

Hours studied	Observed points	Predicted points	
5	190		
8	200		
12	210		
15	240		

Graphical representation

- The equation Predicted points $=160+4^{*}$ (Hours studied) is a straight line with intercept of 160 and slope of 4 .

Is this a good model?

- Does this model fit perfectly? No, it has an error.
- Error $=$ observed points - predicted points or
- Observed points $=160+4^{*}($ hours studied $)+$ error
- We'll have a good model if the errors are as small as possible. Can (how do) we make the errors as small as possible?
- Least squares method: minimize sum (observed points predicted points) ${ }^{2}$

Regression model and estimated equation

Simple linear regression model: an equation that describes how the dependent variable y is related to the independent variable x and an error
$y=\beta_{0}+\beta_{1} x+e$
Observed points $=\beta_{0}+\beta_{1}$ (hours studied) + error

- Unfortunately, we don't know β_{0} and β_{1} but we can estimate them by using sample data, so we get b_{0} and b_{1}

Estimated simple linear equation:
yhat $=b_{0}+b_{1} \mathrm{x}$
Predicted points $=160+4^{*}($ Hours studied $)$

The least squares method

- The least squares method uses sample data to find the estimated regression equation.
- It provides values of b_{0} and b_{1} that minimize the sum of squared errors (SSE).
- $\operatorname{MinSSE}=\Sigma(y \text { kat })^{2}$ or

Minimize sum (observed points - predicted points) ${ }^{2}$

Least squares estimates

- The slope of the regression line is
- $\mathrm{b}_{1}=\operatorname{cov}(\mathrm{x}, \mathrm{y}) / \operatorname{var}(\mathrm{x})=\Sigma\left(\begin{array}{lll}\mathrm{x} & \text { bar })(\mathrm{y} & \mathrm{jbar}) / \Sigma(\mathrm{x} \\ \mathrm{x} & \text { bar }\end{array}\right)^{2}$
- The intercept of the regression line is
- $\mathrm{b}_{0}=\mathrm{ybar}-\mathrm{b}_{1} \mathrm{xbar}$
- Find b_{1} and b_{0} using the least squares method.

Least squares estimates

- $\mathrm{b}_{1}=\Sigma(\mathrm{x}-\mathrm{xbar})(\mathrm{y}-\mathrm{ybar}) / \Sigma(\mathrm{x}-\mathrm{xbar})^{2}=$
- $\mathrm{b}_{0}=\mathrm{ybar}-\mathrm{b}_{1} \mathrm{xbar}=$
- The estimated regression equations is:
- yhat $=163.45+4.66 \mathrm{x}$
- Interpretation: we predict that a student who studied 0 hours will score 163.45 , and 4.66 points more for each additional hour of study.
- Given $\mathrm{x}=5$, the predicted score $=$ yhat $=$

Coefficient of determination

- Coefficient of determination $\left(\mathrm{R}^{2}\right)$ provides a measure of the goodness of fit for the estimated regression equation.
- $\mathrm{R}^{2}=\mathrm{SSR} / \mathrm{SST}=1-\mathrm{SSE} / \mathrm{SST}$
- Values of R^{2} close to 1 indicate perfect fit, values close to zero indicate poor fit. R^{2} of more than 0.25 is considered good in the ag economics field.
- If $\mathrm{SSE}=143.1034$ and $\mathrm{SST}=1400, \mathrm{R}^{2}=$
- This means that 89.78% of the variation is explained by the regression and the rest of the variation is due to error.

Calculations

Hours studied $\left(x_{\mathrm{i}}\right)$	Points on exam 1 $\left(\mathrm{y}_{\mathrm{i}}\right)$	$\mathrm{x}_{\mathrm{i}}-\mathrm{x}$	$\mathrm{y}_{\mathrm{i}}-\mathrm{y}$	$\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}\right)^{*}$ $\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}\right)$	$\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}\right)^{2}$
5	190				
8	200				
12	210				
15	240				

Determining goodness of fit

- How well does the model fit the data?
- $\mathrm{SST}=\mathrm{SSR}+\mathrm{SSE}$
- sum of squares total = sum of squares regression + sum of squares error.
$\Sigma\left(\begin{array}{ll}\text { y } & \text { ybar }\end{array}\right)^{2}=\Sigma(\text { yhat ybar })^{2}+\Sigma(\mathrm{y} \text { yhat })^{2}$
- Total variation $=$ explained variation by the regression + unexplained variation associated with error

Correlation coefficient

- $\mathrm{r}_{\mathrm{xy}}=\left(\operatorname{sign}\right.$ of $\left.\mathrm{b}_{1}\right) * \operatorname{sqrt}\left(\mathrm{R}^{2}\right)=$
- Goodness of fit is a better measure than the correlation coefficient because it can be applied when:
- there are more independent variables
- the relationship between the dependent and independent variables is not linear.

Testing for significance

- Is the increase of $b_{1}=4.66$ points for each hour studied, significant or not?
- In other words, is the slope $\beta_{1}=$ zero? If the slope is zero then y and x are not related (y does not depend on x).
- $\mathrm{H}_{0}: \beta_{1}=0$ and $\mathrm{H}_{\mathrm{a}}: \beta_{1} \neq 0$
- Two tests
- t-test for a coefficient significance ($\beta_{1}=0$ or not)
- F-test for an overall significance (are y and x related? Are all coefficients jointly equal to zero?)
- If one independent variable, these two tests have the same results, with more independent variables, the tests have different results.

ANOVA table					
\qquadSource Sum of Squares Degrees of Freedom Mean Square	F				
Regression	SSR $=$ $\sum(\text { yhat-ybar })^{2}$	$\mathrm{p}=$ number of independent variables	MSR=SSR/p	F=MSR/MSE	
Error	SSE $=$ $\sum(\mathrm{y} \text {-yhat })^{2}$	n-p-1	MSE $=$ SSE/(n-p-1)		
Total	SST= $\sum(\mathrm{y} \text {-ybar) })^{2}$	n-1			

- $\mathrm{SST}=\mathrm{SSR}+\mathrm{SSE}$
- Total variation $=$ explained variation by the regression + unexplained variation associated with error

t -test for a coefficient significance

- $\mathrm{H}_{0}: \beta_{1}=0$ and $\mathrm{H}_{\mathrm{a}}: \beta_{1} \neq 0$
- $\mathrm{t}=\left(\mathrm{b}_{1}-\beta_{1}\right) / \mathrm{s}_{\mathrm{b} 1}$ with d.f. $=\mathrm{n}-\mathrm{p}-1$
- $\mathrm{s}_{\mathrm{b} 1}=\operatorname{sqrt}(\mathrm{MSE}) / \operatorname{sqrt}\left[\Sigma(\mathrm{x}-\mathrm{xbar})^{2}\right]$
- Since the p-value for time studied is $0.0525>0.05$ we accept the null hypothesis, there is no relation between time studied and points scored.

	Standard				
	Coefficients	Error	t Stat	P-value	
Intercept	163.4483	11.88499	13.7525	0.005246	
Time studied	4.655172	1.110698	4.191213	0.052486	
				23	

F-test for overall significance of all coefficients

- $\mathrm{H}_{0}: \beta_{1}=0$ and $\mathrm{H}_{\mathrm{a}}: \beta_{1} \neq 0$
- $\quad \mathrm{SST}=\mathrm{SSR}+\mathrm{SSE}$

Total variation $=$ explained variation by the regression + unexplained variation associated with error

- $\mathrm{F}=(\mathrm{SSR} / \mathrm{p}) /[\mathrm{SSE} /(\mathrm{n}-\mathrm{p}-1)]=\mathrm{MSR} / \mathrm{MSE}$
p is the number of independent variables, n is the number of observations
- If the error explains a lot of the variation in score and the regression doesn't, then the regression is not significant, i.e. $\beta_{1}=0$

Confidence interval for β_{1}

- The confidence interval for β_{1} is $\mathrm{b}_{1} \pm \mathrm{t}_{\alpha / 2} \mathrm{~s}_{\mathrm{b} 1}=$
- Interpretation: I'm 95% confident that the value for β_{1} is between- 012378 and 9.434124 .

	Lower 95.0%	Upper 95.0%
Intercept	112.3113	214.5853
Time studied	-0.12378	9.434124

Model Assumptions

- The error e is a random variable with mean of zero.
- The variance of e, denoted by σ^{2}, is the same for all values of the independent variable.
- The values of e are independent.
- The error e is a normally distributed random variable.

Detecting influential observations

- Influential observation is an observation with extreme values for the independent variable. An influential observation has a high leverage.
- The leverage is determined by how far the values of the independent variables are from their means.
- Solutions?
- Run the regression without the influential observation and see if the results change.

Detecting outliers

- An outlier is an observation that has unusually large or small values. Solutions?
- Maybe a mistake was made - correct it
- Maybe the model doesn't fit well
- May just happened by chance?

Regression of price of stock on number of stocks sold

Regression Statistics						
Multiple R	0.862428					
R Square	0.743781					
Adjusted R Square	0.711754					
Standard Error	1.419338					
Observations	10					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	1	46.78384	46.78384	23.22333	0.001323	
Residual	8	16.11616	2.01452			
Total	9	62.9				
		Standard				
	Coefficients	Error	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	9.264947	1.099136	8.429297	$2.99 \mathrm{E}-05$	6.730332	11.79956
Shares	0.710515	0.147438	4.819059	0.001323	0.370521	1.050369

