การปรับปรุงโครงสร้างการนิสิปาน
ให้กันเสียโดยใช้เทคนิค MASSCOTE

คำนำ

คำว่า MASSCOTE ย่อมาจาก Mapping System and Services for Canal Operation Techniques ถือว่าเป็นตัวใหม่ในการนิสิปานในประเทศไทย ที่หลายคนถูกใจไม่เคยได้ยิน หลายคนเคยได้ยินได้
ฟังมาบ้าง แต่ยังไม่รู้จะทำอย่างไร ดังนั้นไม่เป็นไปอย่างนี้ แนะจะลองใช้เทคนิค MASSCOTE ให้พื้นที่
ช่องท่อชั่นเล็กให้ดีขึ้น เพราะในอนาคตอาจมีการนำเทคนิค MASSCOTE ที่ FAO พัฒนาขึ้นมา
ประยุกต์ในการวางแผนบริหารโครงการชลประทานในประเทศไทย

แผนรองรับได้มีโครงการรูปแบบ MASSCOTE ครั้งแรกในปี 2550 คือนิสิปานระดับชุมชนเจริญปฏิบัติการใช้
เทคนิค MASSCOTE เพื่อวางแผนบริหารโครงการนิสิปานและบริการรักษาทุ่งนาให้ทันสมัย ซึ่งกรมชลประทาน
และ FAO จัดทำโครงการ โครงการนิสิปานและรู้ทุกการปฏิบัติการชลประทานของประเทศไทย
ซึ่งเป็นโครงการให้ความช่วยเหลือทางด้านเทคนิคที่ FAO ให้แก่กรมชลประทาน และในวันสุดท้ายของการ
ประชุมเชิงปฏิบัติการก็ประธนได้ยินหมื่นเป็นรูปความคิดเด่นเด่นที่สุดกับ MASSCOTE ซึ่งจะมีความเห็นว่า
MASSCOTE เป็นเทคนิคการบริหารที่ช่วยวางแผนบริหารโครงการชลประทานที่ดีมาก สามารถบริหารจัดการ
การปฏิบัติการของระบบคลองสิ่ง (Canal Operation) ได้อย่างเป็นระบบ มีหลักวิชาการ แต่ MASSCOTE
ใช้เทคนิคและการวิเคราะห์ระดับสูงและเก็บข้อมูลของโครงการก้าวสำคัญๆ ต้องการใช้ข้อมูล และข้อตกลงที่ดีของ MASSCOTE ต้องมีความรู้และความเข้าใจในแนวคิดในการจัดการก้าวสำคัญที่เน้นการบริการ ที่เรียกว่า Service Oriented Management หรือ SOM จึงทำให้เกิดการนำไปใช้บริการในการบริหาร ระดับสูง แต่โดยทั่วไปผู้ผลิตในสังเขปวิเคราะห์ผลกระทบในระดับน้อยกว่าเพื่อให้ได้ผลหลักการ ที่สำคัญ วิธีการวิเคราะห์และจัดทำแผนในระดับรายละเอียดได้ แต่การนำไปใช้ต้องมีโครงการขนาดใหญ่ที่มีความพร้อมเพื่อใช้เป็นเครื่องมือด้วย

MASSCOTE คืออะไร

MASSCOTE คือเรื่องหรือกลไกยุคใหม่ที่ FAO พัฒนาขึ้นมาเพื่อใช้ในการประเมินผลและวิเคราะห์โครงการต่างๆ ของระบบการประทานอย่างเป็นขั้นตอน เพื่อสร้างแผนการปรับปรุงโครงการการประทานให้ก้าวสำคัญ (Irrigation Modernization) โดยแผนการปรับปรุงโครงการการประทานให้ก้าวสำคัญจะต้องประกอบไปด้วย แผนการปรับปรุงด้านการผลิต สถาปัตยกรรมการจัดการน้ำดังกล่าว และการจัดการที่อยู่อาศัย ที่สามารถให้บริการ สังขัตการที่มีในกิจกรรม รวมถึงการปฏิบัติการและการจัดการที่มุ่งมั่นในการพัฒนา พบว่าหลักหลักของ MASSCOTE คือการปรับปรุงระบบการจัดการใช้ที่มีอยู่โดยใช้ถึงการเป็นสูญเสียอย่างมากตามแนวคิดของการจัดการที่มุ่งมั่นในการบริการเป็นหลัก มุ่งความสนใจในการปรับปรุงระบบปฏิบัติการของคอสต้าที่สามารถบรรจุ วัตถุประสงค์ในการให้บริการ

ความยุทธศาสตร์ในการพัฒนา MASSCOTE เข้าสู่การพัฒนาของโลก ซึ่งประกอบด้วย FAO, International Water Management Institute (IWMI), Irrigation Training and Research Center (ITRC), World Bank และ International Program for Training and Research on Irrigation and Drainage (IPTRID) ได้ประชุมกันหลากหลายจุดในกระบวนการปรับปรุงการประทานให้ก้าวสำคัญ (Irrigation Modernization) ในปี 2542 และในปีที่ผ่านมา FAO ได้ร่วมมือกับสนธิสัญญา MASSCOTE ขั้นตอน 1 โดยการนำเอากระบวนการประเมินผลอย่างรวดเร็ว (Rapid Appraisal Process หรือ RAP) ซึ่งพัฒนาโดย AWC ทำให้การใช้ไปโครงการประทานในแง่มุม เพื่อประเมินผลลัพธ์ที่มีการส่งผล และค้นหาสาเหตุ ว่าจะทำให้ผลลัพธ์ที่มีการส่งผลของโครงการประทานต่างๆ หลังจากนั้นยืนยันของ MASSCOTE ด้วยเรื่องราวต่างๆ ที่เกิดขึ้นได้แก่ faos.jpg MO (Service Oriented Management หรือ SOM)
แนวคิดในการจัดการที่เน้นการบริการ (Service Oriented Management, SOM)

เป้าหมายหลักในการปฏิบัติการส่งน้ำ คือการนำน้ำสู่ประชาชนจากแหล่งน้ำไปสู่ผู้ใช้ตามต้องการ
แนวคิดที่น่าสนใจของ SOM คือการนำแนวคิดในการจัดการแบบสีน้ำจากแหล่งที่สูงไปสู่ผู้ใช้ (Top Down)
จึงได้แบ่งกลุ่มเป็น 2 กลุ่ม ตามแนวคิดของ SOM คือผู้ให้บริการ (Service Provider)
ผู้ให้บริการ (Supplier) ผู้ให้บริการและผู้รับบริการต้องมีการทำข้อตกลงบริการ (Service Agreement)
ว่าจะต้องส่งน้ำให้แหล่งน้ำที่ไหน ที่ไหน เมื่อไร สง่าอย่างไร และจะส่งน้ำมากน้อยเท่าใด โดยการตั้งจุดจัดการส่งน้ำให้ผู้ใช้น้ำตามข้อตกลง ส่งผู้ใช้น้ำคัดค้านปฏิบัติตามข้อตกลงที่ให้ไว้ในโครงการขนาดใหญ่ เช่น การจ่ายค่าบริการ หรือให้ความร่วมมือในการดูแลรักษาระบบคู่น้ำให้ผู้ใช้ในสภาพการใช้งานได้ตลอดเวลา ทำาให้
ทำาให้ความร่วมมือในการปฏิบัติตามข้อตกลงที่ให้ไว้ในสภาพการใช้งานได้ตลอดเวลา ทำาให้
เป้าหมายในการจัดการส่งน้ำให้เป็น เพราะปลูกป่าในพื้นที่และเวทีที่กำหนดไว้ ผลสัมฤทธิ์ของการจัดการการนำจะขึ้นอยู่กับความร่วมมือในการปฏิบัติตามข้อตกลงที่ให้ไว้ในสภาพการใช้งานได้ตลอดเวลา ทำาให้
คือการส่งของสุนัขข้ามระดับโครงการและผู้ใช้น้ำ และจะส่งน้ำมากน้อยตามข้อตกลง ข้อมูล
ข้ามระดับโครงการและผู้ใช้น้ำ ได้แก่
- ความสามารถในการให้บริการส่งน้ำของโครงการ
- ความสามารถในการปฏิบัติตามข้อตกลง
- ความสามารถในการรับความต้องการน้ำตามสภาพความเป็นจริง
- ความสามารถในการปฏิบัติตามข้อตกลง
- ความสามารถในการขาดส่งน้ำจะมีการปฏิบัติตามข้อตกลงหรือไม่

ดังนั้นตามแนวคิดของ SOM จะต้องมีการใหม่เรียนรู้ปุจจัย 3 ประการ คือ น้ำ ข้อมูลข้ามระดับ และเรียน เพื่อให้การปฏิบัติต่างส่งน้ำบรรลุเป้าหมายหลักของ SOM ต่างแสดงในรูปที่ 1
บัญชาและผลสัมฤทธิ์ในการปฏิบัติการของคลองส่งน้ำ

มีการเข้าใจวิธีการดำเนินงานในหลายประเด็นเกี่ยวกับการส่งน้ำ เช่น การให้เทคนิคการปฏิบัติการของคลองส่งน้ำ (Conol Operation Technique) เป็นสิ่งที่นำไปสู่การประสานงานทุกคนมีความรู้ความเข้าใจกันอย่างดีอยู่แล้ว เพราะได้รับการฝึกฝนในฐานะสุจริตในมหาวิทยาลัย หรือการที่ผลักดันการทำงานเฉพาะเจาะจง แต่ถ้าเป็นปัญหาทางด้านเศรษฐกิจ-สังคมมากกว่า ออกแบบโดย FAO พบว่าไม่ได้รับช่างทำงผ่านทุกคนจะเข้าใจเทคนิคการปฏิบัติการของคลองส่งน้ำ จะเกิดขึ้นได้ ผลข้อตอนที่มีความต้องการความร่วมมือทุกฝ่ายต้องการ การบูรณาการระบบส่งน้ำของและทฤษฎีการเดินดินของคลองส่งน้ำ ได้เป็นปัญหาที่สำคัญในการเตรียมพื้นที่รับของระบบส่งน้ำและการปฏิบัติการด้านการส่งน้ำ นักการ์ดันใจในการจัดระบบส่งน้ำผ่านสิ่งจากระบบส่งน้ำของคลองส่งน้ำให้ด้วยการที่มีการพร้อมที่จะใช้ได้ สร้างสรรค์การจัดระบบส่งน้ำ การจัดระบบส่งน้ำของคลองส่งน้ำ ซึ่งมีความสูงสุดในขั้นตอน มีการตัดสินใจทั้งในระบบส่งน้ำ และสิ่งที่จำเป็นต้องทำในระบบส่งน้ำ การปรับปรุงระบบปฏิบัติการของคลองส่งน้ำ ทำให้การดำเนินไปโดยมีความสำเร็จที่ดี
แนวคิดและขั้นตอนขั้นตอนของ MASSCOTE

MASSCOTE ถือว่าการปฏิบัติการของการจัดการกระแสน้ำ (Canal Operation) คือ หัวใจสำคัญของการบริหารงานโครงการพัฒนาการ และการบริหารงานโครงการพัฒนาการข้อมูล ที่มีกิจกรรมการปฏิบัติการที่สอดคล้องกันตามแนวคิดของ MASSCOTE จะต้องเริ่มจากการที่ Mapping หรือการสำรวจและวิเคราะห์ผลกระทบและคุณลักษณะต่างๆ ของระบบของโครงการ หลังจากนั้นจึงทำแผนการแปลงระบบเหล่านี้ออกเป็นแผนที่อยู่หรือหน่วยย่อยที่ทำให้สามารถวิเคราะห์การได้รับและสามารถวิเคราะห์ได้ และสุดท้ายคือการวางแผนการลงทุนและแผนการบริหารจัดการและการปฏิบัติการส่งเสริมสิ่งแวดล้อมที่อยู่อย่างยั่งยืนของระบบ MASSCOTE แบ่งขั้นตอนการดำเนินการแปลงออกเป็น 11 ขั้นตอน ดังแสดงในรูปที่ 2

รูปที่ 2 ขั้นตอนการดำเนินงานของ MASSCOTE (Renault et al., 2007)

ขั้นตอนการดำเนินงานขั้นตอน MASSCOTE แบ่งออกเป็น 2 ระยะ คือ

ระยะ A ประกอบด้วยการดำเนินงานขั้นตอน 1-5 เพื่อการสำรวจและวิเคราะห์ระบบส่งน้ำ วิธีการจัดการผลิตภัณฑ์ในการปฏิบัติงาน บัญชี-อุปสรรค และการใช้ข้อมูลในการดำเนินงานภาคบูรณาการ เพื่อนำมาใช้เป็นข้อมูลพื้นฐานในการวางแผนและการบริหารจัดการโครงการข้อมูลพื้นฐานที่เกี่ยวข้องขั้นตอนที่ 2 คือ Sensitivity หลักพื้นฐานที่สอดคล้องกับความต้องการ ‘การวิเคราะห์ความเสี่ยงของอุตสาหกรรมข้อมูลทางการ ควบคุมน้ำชลประทาน’ ในแหล่งสิ่งเหล่านี้ได้ 4 มกราคม 2551
รายละเอียดขั้นตอนที่ 6-11 เพื่อการแบ่งพื้นที่สังกัดร้อยเป็นพื้นที่ย่อยที่มีผลต่อรวมผลต่อการควบคุมการทำความมั่นคงของพื้นที่ โดยวิเคราะห์เพื่อกำหนดปัญหาและระดับการให้บริการสังกัดที่เหมาะสมกับพื้นที่ย่อย วิเคราะห์ความต้องการทรัพยากรที่สินเปลี่ยนภาระงานสังกัด กำหนดแนวคิดในการบริหารปัญหาในระดับพื้นที่ การจัดการสังกัด การควบคุมการสังกัด และระบบปฏิบัติการของคลองส่งน้ำ การระบุการจัดการเพื่อการทำงานต่างๆ เพื่อทำให้ได้ผลที่เยี่ยมและแผนการปรับปรุงโครงการขอพื้นที่ให้เหมาะสม รายละเอียดการทำความมั่นคงของพื้นที่ 11 ขั้นตอนแสดงอยู่ในตารางที่ 1

ผู้สนใจสามารถขอรับข้อมูลขั้นตอนการทำความมั่นคงจากหนังสือ "FAO Irrigation and Drainage Paper No.63: Modernizing irrigation management the MASSCOTE approach"

<table>
<thead>
<tr>
<th>ตารางที่ 1 กระบวนการทำแบบของ MASSCOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapping..............</td>
</tr>
<tr>
<td>ระยะ A - การวิเคราะห์ข้อมูลพื้นฐานในสภาพปัจจุบัน</td>
</tr>
<tr>
<td>(Baseline information)</td>
</tr>
<tr>
<td>1. ผลลัพธ์ที่เกิดจากการปฏิบัติงานจาก RAP</td>
</tr>
<tr>
<td>2. ความต้องความอ่อนไหวของระบบ</td>
</tr>
</tbody>
</table>
ตารางที่ 1 ระบบการทำงานของ MASSCOTE

3. ปัจจัยที่สร้างกระบวนการทำงานของระบบ (Perturbations)

| การวิเคราะห์ปัจจัยที่สร้างกระบวนการปฏิบัติการส่งน้ำ เช่นการลัพธ์-เปิดน้ำ การตกของแกน การปรับเปลี่ยนรายการส่งน้ำทั้งหมดรวมถึงการตัด.Down ใบต้องวิเคราะห์ทั้งสาเหตุ ผลกระทบต่าง ๆ ความรู้และความรู้ผล ตลอดจนแนวทางการจัดการการปัจจัยระบบงานระบบ ควบคุมด้วยการ ปัจจัยระบบการทำงานระบบ จะมีประโยชน์ต่อการจัดทำแผน
| ยืดหยุ่นสามารถในการให้บริการส่งน้ำและการจัดทำข้อตกลง |

4. ระบบโครงข่ายและสมุทธานา (Networks & water balances)

| การวิเคราะห์โครงข่ายระบบส่งน้ำและระบบส่งน้ำของโครงการ
| วิเคราะห์สมดุลน้ำของโครงข่ายและการแสดงถึงระบบย่อย
| โดยครอบคลุมถึงน้ำมันดิน น้ำฝนและน้ำใต้ดิน เพื่อที่จะให้เป็นพื้นฐานในการแนะระบบส่งน้ำถือเป็นระบบย่อยหรือหน่วยย่อยที่สามารถบริหาร และปฏิบัติการส่งน้ำได้อย่างมีประสิทธิภาพและประสิทธิผล |

5. ค่าใช้จ่ายด้าน O&M (Cost of O&M)

| การวิเคราะห์ค่าใช้จ่ายในการให้บริการส่งน้ำตามแนวทางที่ปฏิบัติอยู่ในปัจจุบัน โดยจำแนกค่าใช้จ่ายสู่หน่วยบริการที่แตกต่าง ๆ ที่เกี่ยวข้อง เช่น ค่าจัดการ ค่าปฏิบัติการ และค่าบริการพิเศษ พร้อมทั้งวิเคราะห์ค่าใช้จ่ายในการปฏิบัติการของคลองส่งน้ำที่มีระดับบริการที่ตั้งสูงไม่ต่ำเนื่อง |

Mapping....

| ระยะ B - วิสัยทัศน์ในการจัดการที่เน้นการบริการ และการปรับปรุงการปฏิบัติการของคลองส่งน้ำที่ทันสมัย (Vision of SOM and modernization of canal operation) |

6. การให้บริการแก่ผู้ใช้น้ำ (Service to users)

| การวิเคราะห์พื้นที่ด้านเศรษฐศาสตร์ ลักษณะพื้นที่และวิสัยทัศน์ของโครงการ เพื่อหาค่าคาดการในปรับปรุงการให้บริการส่งน้ำที่ยั่งยืนได้|

7. หน่วยย่อยที่สั่งจ้างที่สูงในการจัดการ (Management units)

| การแบ่งระบบของประชาชนและพื้นที่ให้บริการส่งน้ำถือเป็นหน่วยย่อยที่มีลักษณะและรูปแบบ (Uniform) และมีขอบเขตการแบ่งที่ชัดเจน |
ตารางที่ 1 กระบวนการดำเนินงาน MASSCOTE

8. ความต้องการสำหรับการปฏิบัติงาน
(Demand for operation)

9. ทางเลือกในการปรับปรุงการปฏิบัติการ
ส่งน้ำและการแปลงน้ำพันทิมลึกที่สุด
ในการปฏิบัติการ
(Options for canal operation
improvements/units)

10. การเชื่อมต่อหรือการผลักทางเลือก
ในการจัดการที่เน้นการบริการ
(Integration of SOM options)

11. การสร้างวิถีที่ดีและแผนการ
ปรับปรุงโครงการให้พันธมิตรและการ
ติดตามและประเมินผล
(Consolidated vision & plan
for modernization and M&E)

การประเมินทรัพยากร
โอกาสและความต้องการในการ
ปรับปรุงระบบการปฏิบัติการของคลองส่งน้ำ โดยต้องสังเกต
วิเคราะห์ข้อเท็จจริงที่
พร้อมทั้งกำหนดแนวทางการจัดการ
และ O&M ของแต่ละพื้นที่โดย
และของทั่วระบบ

กำหนดทางเลือกในการให้บริการส่งน้ำด้วย
(1) การจัดการน้ำ (2) การควบคุมน้ำ (3) การปฏิบัติการ
ของคลองส่งน้ำ ที่มีความเหมาะสมที่สุดในการให้บริการ
และต้านทานการสูญเสียในแต่ละพื้นที่ อดและของทั่วระบบ

การจัดการทางเลือกที่เหมาะสมที่สุดระบบ และตรวจสอบ
ความเชื่อมโยงของพื้นที่ต่าง ๆ สรุปและออกแบบระบบ
การส่งน้ำเพื่อสนับสนุนการปฏิบัติการ

สรุป วิสัยทัศน์สำหรับโครงการ ยุทธศาสตร์การปรับปรุง
โครงการสิ่งแวดล้อมให้พันธมิตร แผนการพัฒนาคุณภาพ
อย่างต่อเนื่อง การเลือกระยะเวลาในการพัฒนา การจัดทำแผน
M&E ของปัจจัยปั๊มน้ำและผลลัพธ์

ตัวอย่างการใช้ MASSCOTE เพื่อวางแผน
ปรับปรุงระบบคลองส่งน้ำใน Uttar Pradesh ประเทศอินเดีย

FAO ได้ร่วมมือกับกรมทรัพยากรของรัฐอุทารคระเทศ (Uttar Pradesh) จัดประชุมเชิงปฏิบัติการการ
ใช้ MASSCOTE ในการวางแผนปรับปรุงโครงการคลองส่งน้ำให้ดำเนินไปในปี 2550 โดยศึกษาคลอง Jumnapur
Branch Canal (JBC) จากโครงการอินทร์คลอง Sarda Sahayak ซึ่งตั้งอยู่ทางตอนเหนือของประเทศ
อินเดียติดกับประเทศเนปาลและประเทศศิลิคขำ Sarda Sahayak เป็นโครงการอินทร์คลองขนาดใหญ่ ซึ่งเกิด
จากการพัฒนาจากแม่น้ำ Ghagha ขึ้นสู่ Sarda Sahayak Feeder Canal ซึ่งมีความจุ 680 ลูกบาศก์เมตร
วิกทัศน์ เมื่อความยาว 258 กิโลเมตร โครงการ Sarda Sahayak มีถึงพื้นที่ขนาดใหญ่และขนาดของพื้นที่
กว่าพันกิโลเมตร สามารถส่งน้ำให้พันที่ประมาณ 10 ล้านไร่ รัฐอุทารคระเทศมีแผนจะปรับปรุงระบบส่งน้ำ
ของโครงการ Sarda Sahoyak โดยมีเงินทุนจาก International Development Association (IDA) โดยมีวัตถุประสงค์เพื่อการปฏิรูปกระบวนการจัดการน้ำ การบริหารจัดการระบบน้ำและระบบการใช้น้ำได้ดีขึ้น ขับเคลื่อนเศรษฐกิจและสภาพแวดล้อมของประเทศทั้งในด้านการประชุมเชิงปฏิบัติการการใช้ MASSCOTE ในกอง JBC จะช่วยให้แนวทางในการปฏิรูปด้านการจัดการน้ำและการขอประสานการสร้าง JBC และสามารถมีแนวทางการปฏิรูปที่เป็นที่ยอมรับของส่วนต่าง ๆ ของโครงการได้

คลอง JBC เป็นคลองขนาดใหญ่มีขนาดความจุก่อน 123.2 ลบ.เมตร/วันที่ ตั้งอยู่บริเวณตอนท้ายของโครงการ Sarda Sahoyak รับน้ำจากคลอง Haldargah Branch Canal (HBC) ซึ่งรับน้ำโดยตรงจาก Sarda Sahoyak Feeder Canal ที่กิโลเมตร 171.5 และมีรายละเอียดอื่น ๆ ดังตารางที่ 2 ของ JBC ไม่สามารถส่งน้ำได้ตามที่ออกแบบไว้ เนื่องจากมีปัญหาที่ทางคลอง ประมาณการว่าแต่ละปีมีปริมาณน้ำลดลงถึง 1.66 ล้านลูกบาศก์เมตร ความน่าเชื่อถือและความเป็นธรรมมีอยู่ในระดับเดิมและเป็นพื้นฐานในการการบริการน้ำ ซึ่งมีความสำคัญอย่างมากต่อการผลิตพืชและทางการเกษตรและการอย่างรีบด่วน ดังนั้น จึงจำเป็นต้องมีการสร้างความเชื่อมั่นในระบบขอประสาน ความรู้สึกเป็นเจ้าของและแก้ปัญหาผลกระทบ (Productivity) ของทรัพยากรที่ติดและน้ำ

ตารางที่ 2 รายละเอียดคลอง JBC ที่ใช้เป็นกรณีศึกษา

<table>
<thead>
<tr>
<th>รายการ</th>
<th>รายละเอียด</th>
</tr>
</thead>
<tbody>
<tr>
<td>ระดับน้ำ</td>
<td>3.66</td>
</tr>
<tr>
<td>ระดับน้ำปลูก</td>
<td>2.01</td>
</tr>
<tr>
<td>คลองน้ำใหญ่</td>
<td>2 สาย ยาว 143 กม.</td>
</tr>
<tr>
<td>คลองน้ำยา</td>
<td>31 สาย ยาว 857 กม.</td>
</tr>
<tr>
<td>คลองน้ำยาอีก</td>
<td>421 สาย ยาว 2,462 กม.</td>
</tr>
<tr>
<td>จำนวน Off-takes ในคลองน้ำยาอีก</td>
<td>4,679</td>
</tr>
<tr>
<td>จำนวนที่ระบุน้ำที่รับน้ำโดยตรงจากคลองน้ำใหญ่และสายย์</td>
<td>3,665</td>
</tr>
<tr>
<td>คลองน้ำยาอีก</td>
<td>38 สาย ยาว 2,502 กม.</td>
</tr>
</tbody>
</table>

วัตถุประสงค์ของการประชุมเชิงปฏิบัติการ MASSCOTE คือ
- เพื่อให้เกิดความรู้ความเข้าใจในที่ทำให้เกิดการจัดการระบบคลอง JBC ประเมินผลลัพธ์ทั้งใน
 การจัดการน้ำ และการขอเสนอแนวในการปรับปรุง
- เพื่อเพิ่มประสิทธิภาพในการจัดการและประสิทธิภาพของระบบคลองส่งน้ำ
- เพื่อให้ข้อเสนอแนะในการติดตามแผนการปรับปรุงโครงการให้ทันสมัย
จากบทความของ Kamar et al. (2010) สามารถสรุปผลการขับเคลื่อน MASSCOTE เพื่อปรับปรุงระบบปฏิบัติการของคลอง JBC ได้ดังนี้

1. ผลการประเมินโครงการด้วย RAP (Rapid Appraisal Process) พบว่าผลลัพธ์ทั้งหมด 3.678 บาท/ไร่ หรือ 2.3 บาท/ลูกบาศก์เมตร (ขั้นตอนแลกเปลี่ยน 1 USD = 29.9 บาท) ซึ่งถือว่าขาดทุน เป็นผลมาจากขาดการให้บริการส่งน้ำของโครงการและผลิตภัณฑ์ส่งน้ำที่ตกค้าง ซึ่งส่งผลต่อกิจกรรมที่สุดคิด ความเสี่ยงต่อและความไม่สามารถในการควบคุมการส่งน้ำ คุณภาพในการปฏิบัติการของคลองส่วนนี้ ซึ่งนักวิชาการจากฝ่ายอื่นของโครงการในкладีที่เกิดขึ้นปัจจุบันจากคลองหลั่งคลอง ประตูระบายน้ำคลอง ทางฝ่ายที่ส่งสัญญาณการปฏิบัติการพบว่า คุณภาพของการปฏิบัติงานของคลองลดลงจาก 2.1 เป็น 1.9 เป็น 1.5 สำหรับคลอง คลองทรงและคลองคลองยามตามลำดับ

2. ผลการประเมินสมรรถนะและความยืดหยุ่น (Capacity and Sensitivity) พบว่าคลอง JBC ซึ่งเป็นระบบการส่งน้ำจากแม่น้ำ พบว่ามีความยืดหยุ่นในการตอบสนองต่อความต้องการน้ำของผู้ใช้น้ำ และที่ระบายน้ำนี้เป็นระบบน้ำจากคลองเส้นใหญ่โดยตรงที่ไม่สามารถควบคุมได้เป็นสภาวะที่ผู้ใช้น้ำจะได้เกิดการ resized ไว้ในระดับน้ำ ซึ่งจำเป็นต้องมีการปรับปรุงความสามารถในการควบคุมน้ำ (Regulating Capacity) ซึ่งมีแนวทางในการปรับปรุงมี 2 แนวทางคือ สร้างอุปกรณ์น้ำในระบบคลอง (Online Buffer Storage) หรือใช้ระบบควบคุมน้ำแบบควบคุมปริมาณ (Volume Control) โดยส่วนของคลองส่วนนี้มีภูมิศาสตร์ ครอบคลุมที่ให้ได้คลองทั้งหมดซึ่งเป็นสภาวะที่คลอง มีการตรวจสอบน้ำการระบายน้ำประตูระบายน้ำคลองในคลองเส้นใหญ่ 12 ชุมนุม มีการระดับน้ำมากที่สุด 12 ชุมนุม แต่ไม่มีการตรวจสอบน้ำในถอดและแนวน้ำระดับน้ำประตูระบายน้ำ ประตูระบายน้ำนี้ ซึ่งมีปัญหาความต้องการของผู้ใช้น้ำ ต้องมีการเปลี่ยนแปลง SCADA มีข้อดีในการติดตามผลการส่งน้ำแบบ Real Time ที่ประกอบด้วยตัวควบคุมทางน้ำ (Escape) มีปัญหา และต้องมีการปรับปรุง ผลการศึกษาของ TAHAL Consulting Engineering Ltd.(2006) พบว่ายังขาดการสูญเสียน้ำในคลองส่วนนี้ 9%

ที่ระบายน้ำกำลังเป็นแบบไม่มีผ่านประตูควบคุมน้ำ ทำให้มีปัญหาในการควบคุมน้ำในระบบที่กระจายน้ำไปในแปลงนา โครงการจัดหาการส่งน้ำแบบควบคุมน้ำได้แปลงน้ำอย่างสูงโดยตรง โดยแปลงน้ำตามสัดส่วนของพื้นที่ทำความปลูกลงและแจ้งกระทบการส่งน้ำให้ผู้ใช้น้ำทราบ การส่งน้ำตัวขยายนี้จะประสานคลองในผู้ใช้น้ำ มีภูมิศาสตร์ให้ความสม่ำเสมออย่างดีที่สุด รูปแบบคลองพร้อมจะได้รับการยอมรับจาก PIM Participatory Irrigation Management โปรเจกต์ 2552 เพื่อช่วยในการจัดการน้ำในระดับแปลงนา อย่างไรก็ตามเป็นปัญหาที่ผู้ใช้น้ำ ผู้ใช้น้ำต้องนั่งใช้แบบกาลัน และผู้ใช้น้ำต้องน้ำประมูลปัญหาผู้ต้องน้ำ เซ็นเตอร์กับโครงการประมวลระหว่างประเทศคลองพัฒนาที่ไทย
อาการควบคุมไม่มีค่าความสัณฑ์โลดดังกล่าว ปริมาณของคลอโรฟิลล์สูงเพื่อให้เกิดความอยู่ในชั้นในรังสีต่างๆ ต่ำกว่าค่าจุดปลอดภัยของรังสีบีเอฟซี (0.35) ต่ำกว่าค่าจุดปลอดภัยของรังสีฟีเอฟซี (0.6) ประกอบกับไม่มีการควบคุมระดับต้านทานของระบบประสาทที่ได้แก่ค่าความอยู่ในชั้นในรังสีต่ำกว่าค่าจุดปลอดภัยของรังสีฟีเอฟซี (0.6)

(3) ผลการวิเคราะห์ที่มีปัจจัยที่กระทบต่อกลุ่มส่งน้ำ พบว่ามีปัจจัยที่กระทบต่อกลุ่มส่งน้ำ ไม่สามารถควบคุมได้ ระดับน้ำปัจจัยดังกล่าวต่ำกว่า 2.5 เมตร จากระดับน้ำปัจจัย 3.5 เมตร ประกอบกับมีการจัดการระบบที่ดี ซึ่งเป็นผลจากการปฏิบัติตามส่งกำลังของระบบ และไม่ต้องใช้การขุดที่มีการควบคุมอย่างมาก แนวทางในการจัดการปัจจัยที่กระทบต่อกลุ่มส่งน้ำ ระบบของระบบส่งน้ำ มีผลกระทบที่เล็ก เช่น (1) การเรียกคืนของ JBC เพื่อเพิ่มความจุของน้ำ หรือ (2) การตัดน้ำที่ดี ยอดความส่งน้ำของน้ำเพื่อเพิ่มการปรับผัน (Positive Perturbation) หรือ (3) ติดตั้งระบบ SCADA เพื่อควบคุมระบบว่างต่ำระดับ Real Time

(4) ผลการวิเคราะห์โครงสร้างข่ายน้ำและสมบัติทำน้ำ (Water Networks and Water Balances) ได้กำหนดขอบเขตการกระจายของการกระจายต่างๆ รังสีของ Haidergarh-Jaunpur Branch Canal (HJBC) ลูกมัน Gomti ทางตอนเหนือ และ ลูกมัน Sai ทางตอนใต้ เพื่อทำนักวิเคราะห์ความคุ้มค่าของทั้งระดับและของน้ำที่มีการเกิดการผันผวนจาก 3 แหล่งที่ศักดิ์ศรีน้ำ น้ำล้างระดับและระดับน้ำ น้ำคั้นชั้น และน้ำคั้นชั้น โดยภักดีน้ำกระแทกที่มีปริมาณเพียงพอ น้ำได้ดีในน้ำคั้นชั้นและน้ำคั้นชั้นที่ ยกน้ำจากมูลค่าที่มีปริมาณน้ำน้อยลง ผลการวิเคราะห์แสดงให้เห็นว่าระดับน้ำในระดับน้ำปัจจัยต่ำกว่าค่าเครื่องมือฉับพลันจาก 3 แหล่งที่ศักดิ์ศรีน้ำ (Input) เท่ากับ 59.94 ล้านสุบัคแคนเด็ก/ปี และปริมาณน้ำที่ใช้ในกระบวนการใช้น้ำ ของทิ้ง ปรับปรุงและปรับระดับต่าง (Output) เท่ากับ 6.210 ล้านสุบัคแคนเด็ก/ปี ขาดคุ้มค่าไม่ได้เป็นที่ยัง 116 ล้านสุบัคแคนเด็ก/ปี และผลการวิเคราะห์แสดงให้เห็นว่าโดยผลลัพธ์ต่างๆ ของการควบคุมน้ำได้คืนคุ้มค่าที่ดี หรือปัจจัยต่อไป หรือไม่ก็ตาม 1,301 ล้านสุบัคแคนเด็ก/ปี และปริมาณน้ำที่ไหลลงสู่ระบบน้ำได้ติดต่อกับ 1,374 ล้านสุบัคแكانเด็ก/ปี ทำให้การปัจจัยน้ำได้คืนคุ้มค่า 73 ล้านสุบัคแคเคนเด็ก/ปี ระดับน้ำได้ดีเมื่อเป็นไปตามหลักการ

(5) ผลการวิเคราะห์ค่าใช้จ่ายในการปฏิบัติติการและกำหนดให้ได้ผลลัพธ์ในปัจจุบัน พบว่าค่าใช้จ่ายในการจัดการ การปฏิบัติติการและบำรุงรักษาระบบคลองส่งน้ำ นับอยู่ 141 บาท/คู ซึ่งโครงการมีรายได้จากการแบ่งส่วนมูลค่าการใช้จาก 29 บาท/คู หรือคิดเป็นเพียง 20% ของค่าใช้จ่าย โครงการสามารถน้ำให้พื้นที่ได้เพียง 45% ของพื้นที่ ในขณะนี้ น้ำที่อาจจะมีการควบคุมระดับของน้ำตาม
ที่อยู่เดิมแล้ว คุณสมบัติได้เปลี่ยนแปลงไปแทบทั้ง 217 บท/ๆ/การใช้บ้านหนึ่งครั้ง ซึ่งมีความจำเป็นต้องมีการ
ใช้ทางอุปกรณ์ร่วมกันได้ได้ติดตั้งในการเพิ่ม ระบบ (Water Logging) ปัจจุบัน
ติดตั้งและระดับน้ำได้สูงต่อถึงสอง

(2) ผลการทำงานของระบบการให้บริการแก่ผู้ใช้ พบว่าจำเป็นต้องมีการรวมสมาชิกผู้ใช้น้ำอย่างที่อยู่
ใกล้เคียงเป็นสมาชิกผู้ใช้น้ำตามมาติ (Federaled) เพื่อให้มีการประสานงานเพื่อในการดำเนินกิจกรรม
การส่งน้ำและภารกิจอุปกรณ์ระบบประทาน และสามารถทำการเชื่อมต่อกับระบบของประเทศอย่างต่อเนื่องได้
ในการนี้จำเป็นต้องมีการหารือให้ที่มีความรู้ด้านเทคนิคระดับกลาง และทางสมาชิกต้องเป็นผู้น้าและ
กรณีการทานเป็นผู้ให้การคัดแยกออกไว้สำหรับ คาดว่าสมาชิกผู้ใช้น้ำจะเป็นผู้ขยายการมี 5 แสน
เฉพาะที่สามารถรวมเป็นสมาชิกผู้ใช้น้ำ 1 แสนนัก และจะมีงานตามแบบแผนใหญ่ประมาณ 50-100 ต่อวันในแต่ละคลอง
HJBC นอกจากนี้ยังมีการจัดให้ GIS จัดทำแผนที่สมบัติเพื่อใช้ในการวางแผนการเฉพาะบัญชีและการส่งน้ำ

(3) ผลการทำงานของความต้องการส่งเสริมในการปฏิบัติการเพื่อให้
ผู้บริการมีความต้องการจะมีอินเทอร์เน็ต
กับระดับบริการ จัดซื้อครบวงจรการทำงานและความยืดหยุ่นในที่ดังกล่าว

Demand for operation = Service x Perturbations x Sensitivity

ความต้องการในการวางแผนของการเข้าถึงน้ำมันอย่างเสถียรภาพในการปฏิบัติการให้บริการ
เป็นมูลค่าได้ขึ้นขึ้นกับตัว ๆ ซึ่งจะแตกต่างกันไปในแต่ละพื้นที่ บางพื้นที่อาจได้ความพยายามเพียงเล็กน้อย
ถึงการปรับปรุงการให้บริการน้ำมากที่สุด

ดังนั้น เกษตรกรจะใช้พื้นที่ที่โครงการจะเป็นหนึ่งช่องทางที่ให้สามารถปฏิบัติงานได้ดีอย่างมีประสิทธิภาพ
และมีประสิทธิผล ซึ่งขึ้นอยู่กับ (1) ระดับการให้บริการของระบบน้ำปลัดและระดับที่อยู่ (2) ความต้อง
และความยืดหยุ่นของบริการที่สามารถทำงานของระบบซึ่งได้แก่บริการทั้งที่มีการสูงต่อลงีในช่วง
ฤดูแล้ง และจำนวนคุณสมบัติในช่วงฤดูที่ไม่มีความควบคุม (3) ความยาวของช่วงฤดูแล้งเนื่องจากพื้นที่
การควบคุมน้ำในช่วงแล้ง จะเห็นได้ว่าช่วงฤดูแล้งที่ยาว ยิ่งต้องใช้ความพยายามมากขึ้น และ
(4) การนำกลับมาใช้ใหม่ (Recycling) หลักพื้นที่ที่มีดีเด่นมากในการนำกลับมาใช้ใหม่ การ
ปฏิบัติการของสองน้ำจะใช้ความพยายามอย่างกว้างขวางที่ไม่มีศักยภาพในการนำกลับมาใช้ใหม่

(5) แนวทางการปรับปรุงการปฏิบัติการของสองน้ำ เพื่อแก้ปัญหาของโครงการ สามารถสรุปได้
ดังนี้ (1) ความเป็นธรรม (Equality) ในการให้บริการ ปัจจุบันต้องระบบส่งน้ำหลักและระบบในวนปัจจุบัน
ความเป็นธรรมในการให้บริการ ซึ่งต้องการสูงขึ้นรองรับในการจัดการน้ำที่มีความเป็นธรรม โดยทำให้ผู้ใช้น้ำ
ผู้ที่มีเทคโนโลยีต้องได้รับน้ำในอัตราที่สูงดูดที่ 0.006 ลิตร/วันต่อปี โดยประเด็นความเป็นธรรมในการได้รับน้ำจะต้องยอมรับความเป็นธรรมในการให้บริการจากกุ้งทอง ไม่ใช่เฉพาะจากกุ้งทองเท่านั้น

demand for operation = service x perturbations x sensitivity

ความต้องการในการวางแผนของการเข้าถึงน้ำมันอย่างเสถียรภาพในการปฏิบัติการให้บริการ
เป็นมูลค่าได้ขึ้นขึ้นกับตัว ๆ ซึ่งจะแตกต่างกันไปในแต่ละพื้นที่ บางพื้นที่อาจได้ความพยายามเพียงเล็กน้อย
ถึงการปรับปรุงการให้บริการน้ำมากที่สุด

ดังนั้น เกษตรกรจะใช้พื้นที่ที่โครงการจะเป็นหนึ่งช่องทางที่ให้สามารถปฏิบัติงานได้ดีอย่างมีประสิทธิภาพ
และมีประสิทธิผล ซึ่งขึ้นอยู่กับ (1) ระดับการให้บริการของระบบน้ำปลัดและระดับที่อยู่ (2) ความต้อง
และความยืดหยุ่นของบริการที่สามารถทำงานของระบบซึ่งได้แก่บริการทั้งที่มีการสูงต่อลงีในช่วง
ฤดูแล้ง และจำนวนคุณสมบัติในช่วงฤดูที่ไม่มีความควบคุม (3) ความยาวของช่วงฤดูแล้งเนื่องจากพื้นที่
การควบคุมน้ำในช่วงแล้ง จะเห็นได้ว่าช่วงฤดูแล้งที่ยาว ยิ่งต้องใช้ความพยายามมากขึ้น และ
(4) การนำกลับมาใช้ใหม่ (Recycling) หลักพื้นที่ที่มีดีเด่นมากในการนำกลับมาใช้ใหม่ การ
ปฏิบัติการของสองน้ำจะใช้ความพยายามอย่างกว้างขวางที่ไม่มีศักยภาพในการนำกลับมาใช้ใหม่

(5) แนวทางการปรับปรุงการปฏิบัติการของสองน้ำ เพื่อแก้ปัญหาของโครงการ สามารถสรุปได้
ดังนี้ (1) ความเป็นธรรม (Equality) ในการให้บริการ ปัจจุบันต้องระบบส่งน้ำหลักและระบบในวนปัจจุบัน
ความเป็นธรรมในการให้บริการ ซึ่งต้องการสูงขึ้นรองรับในการจัดการน้ำที่มีความเป็นธรรม โดยทำให้ผู้ใช้น้ำ
ผู้ที่มีเทคโนโลยีต้องได้รับน้ำในอัตราที่สูงดูดที่ 0.006 ลิตร/วันต่อปี โดยประเด็นความเป็นธรรมในการได้รับน้ำจะต้องยอมรับความเป็นธรรมในการให้บริการจากกุ้งทอง ไม่ใช่เฉพาะจากกุ้งทองเท่านั้น
(2) ปัญหาที่เกิดขึ้นในหลายพื้นที่ คือน้ำท่วมซึ่งมักเกิดขึ้นจากฝนที่ตกเกินความคิดเห็นการระบาย (Over-irrigation) การวิเคราะห์สถานการณ์และระดับน้ำได้ข้อมูล ซึ่งต้องมีการแก้ไขโดยการออกแบบระบบระบายน้ำที่สามารถแก้ไขปัญหาน้ำท่วมซึ่งมักเกิดขึ้นในหลายพื้นที่ได้สำเร็จ ในการวิเคราะห์ความต้องการในบางพื้นที่ (3) การติดตั้งระบบโครงสร้างการตรวจจับน้ำท่วมน้ำชุมชนในประเทศนั้นๆ และวิทยาการการใช้น้ำจากแหล่งต่างๆ ได้ (4) ถูกต้องในการจัดการน้ำต้องแบบรูปแบบจากการส่งน้ำเพื่อการประลุตแบบที่พอเพียงและแก้ปัญหาความต้องการเป็นการส่งน้ำเพื่อสิ่งมีแกนระบบการพรมพุทธิ์ที่หลากหลาย มักการใช้น้ำได้ติดตามกลับเข้ามาด้วย สมัยฝน ให้รู้ว่าก่อนจะท่วมน้ำได้ติดเข้ามาใช้เพื่อละปัญหาน้ำท่วมนั้น เพื่อความถูกต้องและความถูกต้องในการใช้บริการน้ำตามความต้องการของผู้ใช้น้ำ และความเสถียรของแหล่งน้ำที่ (5) กำหนดนโยบายทางการ ควบคุมระดับน้ำในคลองส่งน้ำลาดใหญ่ไทยทำ ช่วง +10 ซม. และติดตั้งระบบควบคุมน้ำที่มีประสิทธิภาพในระบบการเขาเข้าน้ำ

สรุป

MASSCOTE เป็นเทคนิคที่สามารถใช้ในการปรับปรุงระบบปฏิบัติการของคลองส่งน้ำ ตามแนวคิดของการประชุมสมัชชาใหญ่ ซึ่งเน้นการให้บริการที่มีความน่าเชื่อถือ มีความเป็นธรรม มีความยั่งยืน ตามความต้องการของผู้ใช้น้ำ และเป็นระบบที่มีประสิทธิภาพ MASSCOTE เป็นเทคนิคใหม่ที่ตอบโจทย์ความต้องการของผู้ใช้น้ำในคลองส่งน้ำ ซึ่งทำให้การบริหารจัดการน้ำสามารถมีประสิทธิภาพ ส่งผลต่อการความสามารถในการให้บริการน้ำในภาคยุคใหม่ ซึ่งจะสามารถทำให้ MASSCOTE ให้ประโยชน์ได้

เอกสารอ้างอิง

(1) วิภัย ภูมิทันใจ. 2551. การวิเคราะห์ความยั่งยืนของภาคการควบคุมน้ำชุมชนในประเทศไทย หนังสือ วันศุกร์ที่ 4 มกราคม 2551, หน้า 43-53.