

using

# **Continuous Fields**

# Dr.Weerakaset Suanpaga (D.ENG RS&GIS)

Department of Civil Engineering Faculty of Engineering , Kasetsart University Bangkok, Thailand http://pirun.ku.ac.th/~fengwks/gis/lecture//9Continuous\_Fields\_6p.pdf

#### Continuous Field?

Where data is held in square raster or grid format

Each datalayer is in georeferenced raster layer

#### Map Algebra

Mathematical operations on whole raster layer Easy to write numerical models

# \*\*\*

## **Basic Operations**

#### Map Algebra and Cartographic Modelling

Same algebraic notation can be used on a grid data as on single numbers.

This method is called MAP ALGEBRA.

The procedure for using the algebraic techniques to build models for spatial analysis is called CARTOGRAPHIC MODELLING

# \*\*

#### Advantage of Raster Data

The loss of information due to rasterising smooth polygon boundaries is more than offset by the advantage of not having to create new polygons by intersection.

By choosing a grid size as remote sensing data can allow use of remote sensing data also in numerical model

Attributes are stored in separate layer, it is a major advantage







#### 

NEWMAP = MAP1 + MAP2 + MAP3

NEWMAP = (MAP1 + MAP2 + MAP3) / 3

NEWMAP = ((MAP1 - MAP2) / (MAP1 + MAP2)) + MAP3

All operations are left to right

All these operations compute new values cell by cell basis



#### COMMAND Language Interface (CLI)

CLI allows the user to express the basic functions in the mathematical language It makes easy to write mathematical models to operate on gridded data Many GIS packages provide Macro Language for this purpose ARC INFO - AML (ARC MACRO LANGUAGE) PC ARC INFO- SML (SIMPLE MACRO LANGUAGE) ARC VIEW- AVENUE



All the Logical and Numerical operations for discrete entities can be applied to continuous grid





# **Spatial Operations**

# DISADVANTAGES OF USING GRIDDED

Exact shapes of entities are just approximated by the grid cells

can not be operated without first deriving the topology from the properties of the surface

# ADVANTAGES OF USING GRIDDED DATA

- Continuous field model provides a much richer suite of truly spatial analysis operations
- These have many practical usages
- Neighborhood is generally isomorphic but not necessary

# Interpolation

Interpolation is the prediction of a value of an attribute at an unsampled site from the measurements made at other sites falling within a given neighborhood.

Interpolation is used to create discretized continuous

surfaces from observations at sparsely located points or resampling a grid to a different density or orientation as in remote sensing images.

### **Spatial Operations**

#### Interpolation

- Spatial Filtering
- First and High order derivatives
- The derivation of surface topology: drainage networks and catchment delineation
- Contiguity assessment (clumping)
- Non-linear dilation (spreading with friction)
- Viewsheds, Shaded relief, and Irradiance

#### Interpolation (conta



## **Spatial Analysis using Square Window**





# <section-header><section-header><section-header><section-header><section-header><text><text>

Window Operations for Spatial Filtering MIN 3.4 MEAN 



#### irst and higher order derivatives of a continuous surface



#### Generic Command for Filtering

- To compute low-pass and high-pass filters:
  - Iow-pass = windowaverage(continuous\_surface, n)
  - high\_pass = continuous\_surface low\_pass
    - where, n is the size of the square window in cells or distance unit



#### Generic Command for Filtering..

- ◆ To compute modal filters:
  - modal\_map = windowmajority(continuous\_surface, n)
- ◆ To compute range filters:
  - range\_map = windowrange(continuous\_surface, n)
    - where, n is the size of the square window in cells or distance uni

#### Low\_pass filtering.....

- Low\_pass filtering removes extremes from the data, producing a smoother image
- If mean is replaced by the mode then it becomes majority filter. Mode is the most common value
- A modal or majority filter is useful for simplifying a complex map



#### High\_pass filtering.

- High\_pass filter enhances local variations in the continuous surface specially near the boundaries
- If there is a change from one homogenous class to another in the continuous surface then there will be enhancement at that location
- high\_pass image = Original\_image Low\_pass image



#### Diversity filtering.....

For nominal or ordinal data the MINORITY and DIVERSITY are useful

operations to find out local complexity in the data

• A MINORITY operation involves finding the least common value in the

window

• A DIVERSITY operation involves finding the number of different values in the

window



#### High\_pass filtering operators.





HP Filter - Point

edge Filter – Diagonal at 135

\*\*

# edge operators.....



| 0 | 1 | 0 |  |
|---|---|---|--|
|   |   |   |  |
|   |   |   |  |
| 0 | 1 | 0 |  |
|   |   |   |  |
|   |   |   |  |
| 0 | 1 | 0 |  |
|   |   |   |  |
|   |   |   |  |

edge filter - horizontal

#### First and Higher order derivatives of a continuous surface

- Derivatives are approximated either by computing differences within a square window or
- by fitting a polynomial to the data within a filter.
- The two first order derivatives are SLOPE and ASPECT of the surface
- The two second order derivatives are the PROFILE CONVEXITY and PLAN CONVEXIT

#### Using an edge filter to extract bou



#### Slope

SLOPE is defined as a plane tangent to the surface as modeled by the DEM at any given point and

comprises two components:

- ♦ Gradient
  - The maximum rate of change of altitude
- ♦ Aspect

the compass direction of this maximum rate of change in altitude

- Slope and Aspect provide sufficient data about the terrain or the surface
- But for Geomorphologist it is insufficient









RANGE TOTAL 





#### Window Operations for Spatial Filtering



#### Window Operations for Spatial Filtering









