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Objectives of Classificationj
To create Maps such as Landuse Map, Forest Map, 
Crop Map, Shrimp pond Map, Mangrove Map, etc.p p p p p g p
Carry out quantitative interpretation using 
mathematical /statistical modeling.
To assign corresponding class to groups with 
homogeneous characteristics, with the aim of 
discriminating multiple objects from each otherdiscriminating multiple objects from each other 
within the image.
The level is called class. Classification will be 
executed on the base of spectrally defined features, 
such as density, texture etc. in the feature space. It 
can be said that classification divides the featurecan be said that classification divides the feature 
space into several classes based on a decision 
rule.
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Classes are for such as Land use, Land Cover, Crop 
Type, Forest Types, and etc.

RS Image ClassificationRS Image Classification
Multi-Spectral Data ClassificationMulti Spectral Data Classification
Assumption - Different surface materials 

have defferent sepectral reflectance
K-dimensional vector ( K:number of bandK dimensional vector ( K:number of band 

)
di id K di i l f idivide K-dimensional feature space into 

few regions ( classes )
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Concept of Classification of Remote Sensingp g
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Segmentation in Feature Domaing
In general, the separation of all classes requires 
more than two spectral bands Because themore than two  spectral bands. Because the 
clusters occur in K-dimensions.
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Spectral Reflectancep
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Multi-spectral Classificationp
The spectral signature is a K-dimensional vector 
whose coordinates are the measured radiance inwhose coordinates are the measured radiance in 
each spectral band. If every pixel from each land 
cover has same radiance with in the class, only 1 , y
band (IR) would be enough for classification for the 
case of water, soil and vegetation below.
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Variation of Multispectral datap
In reality, the spectral radiance of a given 

f t i l i t h t i d bsurface material is not characterized by a 
single, deterministic curve, but by a family of 

ith f i bilitcurves with a range of variability.
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Segmentation in Multi-dimensional feature spaceg p

Thus, it is very common to find big overlaps among 
distrib tions in one band informationdistributions in one band information.
By combining other bands, we can improve the 
accuracy of classification which is a segmentation in aaccuracy of classification, which is a segmentation in a 
multi-dimensional feature space.
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Supervised and Un-Supervised Classificationp p

Supervised Classificationp
Classify each pixel into a pre-established class.
Population statistics of each class is to be identified 

by training areas.
Each pixel will be classified into a class which has 

similar (nearest ) property with the pixelsimilar (nearest ) property with the pixel.
Un-supervised Classification
Analyze inherent structure of the dataAnalyze inherent structure of the data
Unconstrained by external knowledge about area
When knowledge about the area is not enoughWhen knowledge about the area is not enough

Combination
Un Supervised Classification > Ground Truth >
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Un-Supervised Classification -> Ground Truth -> 

Supervised Classification

UnsupervisedUnsupervisedUnsupervisedUnsupervised

Clustering algorithmClustering algorithm
Objective and statistically validObjective and statistically valid
May not be meaningfulMay not be meaningful
Class identification requiredClass identification required
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SupervisedSupervisedSupervisedSupervised

Uses training areasUses training areasgg
Classes will be meaningfulClasses will be meaningfulgg
Classes may not be statistically Classes may not be statistically 
validvalid
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SupervisedSupervised  methodmethodSupervisedSupervised  methodmethod
D it Sli iD it Sli iDensity SlicingDensity Slicing

B l ifiB l ifiBox classifiersBox classifiers

Nearest neighbourNearest neighbour

Maximum likelihoodMaximum likelihood

End member analysisEnd member analysis
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Density SlicingDensity Slicing
Simplest, easiest to implementSimplest, easiest to implement

U l b dU l b dUses only one bandUses only one band

Prone to ambiguityProne to ambiguityProne to ambiguityProne to ambiguity
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Box ClassifiersBox ClassifiersBox ClassifiersBox Classifiers

MultiMulti--band density slicingband density slicing

Defines a spectral Defines a spectral ““volumevolume”” for each classfor each class

Reduces ambiguityReduces ambiguity

Boundary solutions are arbitraryBoundary solutions are arbitrary
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Nearest NeighbourNearest NeighbourNearest NeighbourNearest Neighbour

Defines a typical pixel for each classDefines a typical pixel for each class
Assigns pixels on the basis ofAssigns pixels on the basis ofAssigns pixels on the basis of Assigns pixels on the basis of 
spectral distancespectral distancepp
Can separate diverse classesCan separate diverse classes
Boundary problems remain Boundary problems remain 

l dl dunresolvedunresolved
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Maximum LikelihoodMaximum Likelihood
Most Popular methodsMost Popular methods
Defines a typical pixel for each classyp p
Calculates the probability that each pixel 
in the image belongs to that class
Maps classes on the basis of confidenceMaps classes on the basis of confidence 
levels
Boundary problems resolved
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Bayes Theoryy y
feature x --- for example, the gray level of each pixel

� ( | i ) b bilit d it f ti i l i�  p( x | i ) : probability density function in class i
�  p( i ) : a priori probabilities
�  p( i | x ) : a posteriori probabilities

Bayes Rule
p( i | x ) : p( x | i ) p( i ) / p( x )

 If we observed feature x, what is the probability to be class i ?
p(x ) = Σ p ( x | i ) p( i )

Bayes Dicision Rule
� one dimensional, two-class classification problem
� a pixel belongs to class 1 if p(x|1)p(1) > p(x|2)p(2)

23 � a pixel belongs to class 2 if p(x|2)p(2) > p(x|1)p(1)

Bayes Decision Ruley
p(forest) = 0.6
p(Agr) = 0.4
P(f1|Forest)=0.3( | )
P(f2|Forest)=0.7
P(f1|Agr)=0.9
P(f2|Agr)=0.1

p(f1|Forest) *p(Forest)= 0.3 x 0.6 = 0.18
p(f2|Forest) *p(Forest)= 0.7 x 0.6 = 0.42
p(f1|Agr) *p(Agr)= 0.9 x 0.4 = 0.36p(f1|Agr) p(Agr)  0.9 x 0.4  0.36
p(f2|Agr) *p(Agr)= 0.1 x 0.4 = 0.04

p(Forest|f1)=p(f1|Forest)*p(Forest) / p(f1) = 0.18 / 0.54 = 0.33
p(Agr|f1)=p(f1|Agr)*p(Agr) / p(f1) = 0.36 / 0.54 = 0.67
p(Forest|f2)=p(f2|Forest)*p(Forest) / p(f2) = 0.42 / 0.46 = 0.91
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p( | ) p( | ) p( ) p( )
p(Agr|f2)=p(f2|Agr)*p(Agr) / p(f2) = 0.04 / 0.46 = 0.09



Discriminant FunctionDiscriminant Function
The Bayes Dicision Rule is restated asThe Bayes Dicision Rule is restated as
a pixel belongs to class 1 if D1(x) > D2(x)
 i l b l l if ( ) ( )a pixel belongs to class 2 if D2(x) > D1(x)

where Di is called discriminant function and 
is given byis given by
Di(x) = p( x | i ) p( i )
However P(i) is unknown, we assume p(i)=p(j)
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Assumption of Normal Distributionp

If the class probability distributions are normaly

Bayes optimal discriminant function for class i is theny p

p(i) is unknown. Assumption of p(i) = p(j),p(i) is unknown. Assumption of p(i)  p(j),
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Extension to K DimensionExtension to K Dimension
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Thresholdingg

Eliminate pixels which have low posteriori probabilityy
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Actual Distribution
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End Member AnalysisEnd Member AnalysisEnd Member AnalysisEnd Member Analysis

Still experimentalStill experimental
Uses a library of known spectral curvesUses a library of known spectral curvesUses a library of known spectral curves Uses a library of known spectral curves 
to match the observed curveto match the observed curve
Must have N+Must have N+1 1 bands to avoid bands to avoid 
ambiguityambiguity
Li it d b d t i tLi it d b d t i tLimited by data requirementsLimited by data requirements
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6.4 Unsupervised Classificationp

To determine the inherent structure of the data, 
unconstrained by

external knowledge about the area.
To produce clusters automatically, which 
consists of pixels with similar spectral signature
Hierarchical ClusteringHierarchical Clustering

Evaluate distance between clusters
Merge a pair of clusters which have the minimum distance.
Members are not reallocated to different clusters

Non-Hierarchical Clustering
K mean ISODATA methodK-mean, ISODATA method
Reallocation of members
Merge and Division of clusters
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Hierarchical clusteringg
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ISODATA method
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ISODATA Unsupervised Classification
example
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6.5 Accuracy Assessmenty

Accuracy assessments determine the quality of the 
information derived from remotely sensed data 
(Congalton and Green, 1999).
Accuracy assessment is important to produceAccuracy assessment is important to produce 
reliable maps.
Assessments can be either qualitative orAssessments can be either qualitative or 
quantitative. In qualitative assessments, we 
determine if a map "looks right“ by comparing what 
we see in the imagery with what we see on thewe see in the imagery with what we see on the 
ground.
However quantitative assessments attempt toHowever quantitative assessments attempt to 
identify and measure remote sensing-based map 
error. In such assessments, we compare map data 
with reference or ground truth data
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Reference/Ground truth
data collection

Usually we divide ground truth into two.y g
 50% is used for supervised classification training
 50% is used for accuracy assessment

Aerial photographs
Other Mapsp
Ground based data is assumed to be 100% 
correct in accuracy assessments, hence it'scorrect in accuracy assessments, hence it s 
very important that the data is collected 
carefully. It should be collected consistently 
with vigilant quality control.
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Common quantitative errorq
assessments

Error Matrix or Confusion Matrix – assesses 
accuracy for each class as well as for theaccuracy for each class as well as for the 
whole image; this includes errors of 
inclusion and errors of exclusioninclusion and errors of exclusion

W l l fWe must accept some level of error as a 
trade off for the cost savings of remotely 

d d t (C lt d Ksensed data (Congalton and Kass, 1999)
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Confusion Matrix
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ENDEND

Thank you forThank you for 
AttentionAttention
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