Problem 2.5

6. a. \(f(0) = 0, f(2) = 1, f(3) = 3, f(4) = 2 \)

 b. Domain: all \(x \) such that \(0 \leq x \leq 4 \)

 c. Range: all \(y \) such that \(0 \leq y \leq 3 \)

 d. \(f(x) = 0 \) for \(x = 0 \). So a real zero is 0.

10. \(y = 3 - 2x \)

 If \(y = 0 \), then \(0 = 3 - 2x \), \(x = \frac{3}{2} \).

 If \(x = 0 \), then \(y = 3 \). Intercepts: \(\left(\frac{3}{2}, 0 \right), (0, 3) \)

 \(y \) is a function of \(x \). One-to-one.

 Domain: all real numbers

 Range: all real numbers

14. \(y = 4x^2 - 16 \)

 If \(y = 0 \), then \(0 = 4x^2 - 16 = 4(x^2 - 4) \),
 \(0 = 4(x+2)(x-2) \), \(x = \pm 2 \).

 If \(x = 0 \), then \(y = -16 \).

 Intercepts: \((\pm 2, 0), (0, -16) \)

 \(y \) is a function of \(x \). Not one-to-one.

 Domain: all real numbers

 Range: all real numbers \(\geq -16 \)
30. \(F(r) = -\frac{1}{r} \)

If \(F(r) = 0 \), then \(0 = -\frac{1}{r} \), which has no solution.

Because \(r \neq 0 \), there is no vertical-axis intercept. Intercept: none.

Domain: all real numbers \(\neq 0 \)
Range: all real numbers \(\neq 0 \)

32. \(v = H(t) = \left| u - 3 \right| \)

If \(v = 0 \), then \(0 = \left| u - 3 \right| \), \(u - 3 = 0 \), so \(u = 3 \).

If \(u = 0 \), then \(v = -3 \).

Intercepts: \((3, 0), (0, 3)\).

Domain: all real numbers
Range: all real numbers \(\geq 0 \)

36. Domain: all real numbers \(\geq -1 \)
Range: all real numbers \(\leq 11 \)

40. From the horizontal line test, the graphs which represent one-to-one functions of \(x \) are (c) and (d).