ICNS 100 Homework 2

Problem 2.6

8.
$$y = |2x| - 2$$

Intercepts: If
$$y = 0$$
, then $|2x| = 2$, $2|x| = 2$,

$$|x| = 1$$
, so $x = \pm 1$; if $x = 0$, then $y = -2$.

Testing for symmetry gives:

x-axis:
$$-y = |2x| - 2$$

$$y = -|2x| + 2$$

y-axis:
$$y = |2(-x)| - 2$$

$$y = |2x| - 2$$

origin:
$$-y = |2(-x)| - 2$$

$$y = -|2x| + 2$$

line
$$y = x$$
: (a, b) on graph, then $b = |2a| - 2$ and

$$a = \pm \frac{b+2}{2} \neq |2b| - 2$$
 for all b, so

Answer: (±1, 0), (0, -2); symmetry about y-axis

16.
$$y = \frac{x^4}{x + y}$$

Intercepts: If
$$y = 0$$
, then $\frac{x^4}{x} = 0$, which has no

solution; if
$$x = 0$$
, then $y = \frac{0}{v}$, which has no

solution.

Testing for symmetry gives:

x-axis:
$$-y = \frac{x^4}{x + (-y)}$$

$$y = \frac{x^4}{-x + v}$$

y-axis:
$$y = \frac{(-x)^4}{(-x) + y}$$

$$y = \frac{x^4}{-x + y}$$

origin:
$$-y = \frac{(-x)^4}{(-x) + (-y)}$$

$$y = \frac{x^4}{x + v}$$

line
$$y = x$$
: (a, b) on graph, then $b = \frac{a^4}{a+b}$, and $a+b=\frac{a^4}{b}$, but $a+b=\frac{b^4}{a}$ will not necessarily be true, so (b, a) is not on the graph.

Answer: no intercepts; symmetry about origin

20.
$$3y = 5x - x^3$$

Intercepts: If
$$y = 0$$
, then $5x - x^3 = 0$,

$$x(\sqrt{5} + x)(\sqrt{5} - x) = 0$$
, so $x = 0$ or $x = \pm \sqrt{5}$; if

$$x = 0$$
, then $y = 0$.

Testing for symmetry gives:

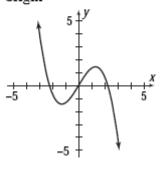
x-axis:
$$3(-y) = 5x - x^3$$

$$3y = -5x + x^3$$

y-axis:
$$3y = 5(-x) - (-x)^3$$

$$3y = -5x + x^3$$

origin:
$$3(-y) = 5(-x) - (-x)^3$$


$$3y = 5x - x^3.$$

line
$$y = x$$
: (a, b) on graph, then $3b = 5a - a^3$,

but $3a = 5b - b^3$ will not necessarily be true so (b, a) is not on the graph.

Answer: $(0, 0), (\pm \sqrt{5}, 0)$; symmetry about

origin

24.
$$x^2 - y^2 = 4$$

Intercepts: If y = 0, then $x^2 = 4$, so $x = \pm 2$; if x = 0, then $-y^2 = 4$, $y^2 = -4$, which has no real roots.

Testing for symmetry gives:

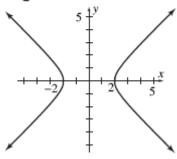
x-axis:
$$x^2 - (-y)^2 = 4$$

$$x^2 - y^2 = 4$$

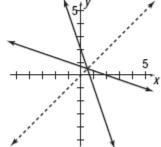
y-axis:
$$(-x)^2 - y^2 = 4$$

$$x^2 - y^2 = 4$$

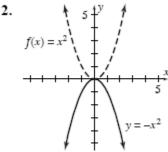
Since there is symmetry about x-and origin:

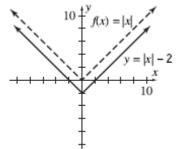

y-axes, symmetry about origin exists.

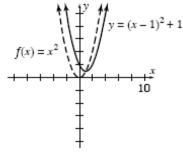
line
$$y = x$$
: (a, b) on graph, then $a^2 - b^2 = 4$ and $a^2 = 4 + b^2 \neq b^2 - 4$ for all b , so


$$a = 4 + b \neq b - 4 \text{ 101 and } b$$

(b, a) is not on the graph.


Answer: (±2, 0); symmetry about x-axis, y-axis, origin.




Problem 2.7

6.

10.

Translate 3 units to the left and 4 units downward.