1. Find an equation of the line that passes through the points (2, 3) and (2, -5). (1 point)

2. (a) Suppose f is a linear function such that $f(0) = 6$ and $f(3) = 4$. Find $f(x)$. (1 point)
 (b) Suppose f is a linear function with slope 2 and such that $f(-3) = 8$. Find $f(x)$. (1 point)

3. Given the quadratic function $f(x) = x^2 - 8x + 13$.
 (a) Find the vertex. (1/2 point)
 (b) Find an equation of axis of symmetry. (1/2 point)
 (c) Find the range of f. (1/2 point)
 (d) Find the y-intercept. (1/2 point)
 (e) Sketch the graph. (1 point)

4. Figure below shows the graph of $y = f(x)$.

ICNS100 Midterm, T3/2013-14

1. Find an equation of the line that passes through the points (2, 3) and (2, -5). (1 point)

2. (a) Suppose f is a linear function such that $f(0) = 6$ and $f(3) = 4$. Find $f(x)$. (1 point)
 (b) Suppose f is a linear function with slope 2 and such that $f(-3) = 8$. Find $f(x)$. (1 point)

3. Given the quadratic function $f(x) = x^2 - 8x + 13$.
 (a) Find the vertex. (1/2 point)
 (b) Find an equation of axis of symmetry. (1/2 point)
 (c) Find the range of f. (1/2 point)
 (d) Find the y-intercept. (1/2 point)
 (e) Sketch the graph. (1 point)

4. Figure below shows the graph of $y = f(x)$.
(a) \(f(1) = \) \(\frac{1}{2} \) point

(b) What is the domain of \(f \)? \(\frac{1}{2} \) point

(c) What are the \(x \)-intercepts? 1 point

5. Find a general linear form of a line that passes through \((-7, -5)\) and is parallel to the line \(x + 4y = y - x + 6 \). 2 points

6. Solve the following system of equations.

\[
\begin{align*}
3x + 4y + z &= 9 \\
18x - y + 6z &= 4 \\
\end{align*}
\]

Write your answer in a parametric form if necessary. 3 points

7. Sketch the graph of \(y = \begin{cases} x^2 - 1 & \text{if } 0 \leq x < 2 \\ 2x - 4 & \text{if } 2 \leq x < 4 \end{cases} \) 2 points
8. Suppose \(f(x) \) is a linear function given by \(f(x) = \frac{3x - 2}{5} + 1 \). Find the slope and the \(y \)-intercept. (1 point)

9. Test whether the graph of \(x^2 = y|y| + 16 \) is symmetric about
 (a) the \(y \)-axis, (2 points)
 (b) the origin.

10. The demand function for a manufacture’s product is \(p = f(q) = 600 - 10q \) where \(p \) is the price per unit when \(q \) units are demanded by consumers. Find the level of production that will maximize the manufacture’s total revenue and also determine the maximum revenue. (3 points)

11. The graph of \(y = f(x) \) is shown below.

12. Find the slope-intercept form of the line that has \(x \)-intercept 2 and is perpendicular to the line \(x + 2y - 1 = 0 \). (2 points)

13. Solve the following non-linear system.

\[
\begin{align*}
x + y &= -3 \\
x^2 + y^2 &= 17.
\end{align*}
\] (3 points)
14. Suppose the variables p and q are linearly related such that $p = 3$ when $q = 20$, and $p = 5$ when $q = 15$. Find p when $q = 12$. (1 point)

15. Suppose that consumers will demand 100 units of a product when the price is 10 per unit, and 120 units when the price is 8 per unit. Assuming that price p and quantity q are linearly related, find

(a) the equation of p in terms of q, (1 point)
(b) the price at which 90 units are demanded. (1 point)

16. Solve the following system of equations.

\[
\begin{align*}
 x + y + z &= 6 \\
 2y + 5z &= -4 \\
 2x + 5y - z &= 27.
\end{align*}
\]

Write your answer in a parametric form if necessary. (3 points)