1. An antiderivative of a function \(f \) is a function \(F \) such that
\[F'(x) = f(x). \]

2. Any two antiderivatives of a function differ only by a constant.

3. The definite integral of any function \(f \) with respect to \(x \) is written
\[\int f(x) \, dx \] and denotes the most general antiderivative of \(f \). Hence,
\[\int f(x) \, dx = F(x) + C \text{ if and only if } F'(x) = f(x). \]

4. Basic Integration Formulas
 (a) \(\int k \, dx = kx + C; \ k \text{ is a constant} \)
 (b) \(\int x^n \, dx = \frac{1}{n+1}x^{n+1} + C, \ n \neq -1 \)
 (c) \(\int x^{-1} \, dx = \int \frac{1}{x} \, dx = \int \frac{dx}{x} = \ln|x| + C \ \text{ for } x \neq 0 \)
 (d) \(\int \frac{1}{ax+b} \, dx = \frac{1}{a} \ln|ax+b| + C \ \text{ for } a \neq 0 \)
 (e) \(\int e^{ax+b} \, dx = \frac{1}{a}e^{ax+b} + C \ \text{ for } a \neq 0 \)
 (f) \(\int kf(x) \, dx = k \int f(x) \, dx; \ k \text{ is a constant} \)
 (g) \(\int (f(x) \pm g(x)) \, dx = \int f(x) \, dx \pm \int g(x) \, dx \)

5. Techniques of Integration
 (a) Guessing a likely antiderivative
 (b) Substitution
 (c) Integration by parts:
 \[\int u \, dv = uv - \int v \, du \]
Example Determine the definite integrals.

(a) \(\int \left(\sqrt[3]{x} - \frac{3}{\sqrt[3]{x}} \right) dx \)
(b) \(\int (e^{2x} - x^3(\sqrt[3]{x} + 1)) dx \)
(c) \(\int \frac{(x^3 + 1)^2}{x^2} dx \)

(d) \(\int \frac{2x^2}{3 - 4x^3} dx \)
(e) \(\int \sqrt[3]{x} + 1 dx \)
(f) \(\int \frac{x^3}{\sqrt{x^2 + 1}} dx \)

(g) \(\int \frac{3x + 5}{e^{2x}} dx \)
(h) \(\int (x - e^{-x})^2 dx \)
(i) \(\int x^5e^{x^2} dx \)

Example The sole producer of a product has determined that the marginal-revenue function is \(\frac{dr}{dq} = 100 - 3q^2 \).

Determine the point elasticity of demand for the product when \(q = 5 \).

Example A manufacturer has determined that the marginal-cost function is \(\frac{dc}{dq} = 0.003q^2 - 0.4q + 40 \)

where \(q \) is the number of units produced. If marginal cost is \$27.50\ when \(q = 50 \) and fixed costs are \$5000, what is the average cost of producing 100 units?

Example The marginal-cost function for a manufacturer’s product is given by \(\frac{dc}{dq} = \frac{9}{10} \sqrt[4]{q} \sqrt{0.04q^{3/4} + 4} \)

where \(c \) is the total cost in dollars when \(q \) units are produced. Fixed costs are \$360.\n
(a) Determine the marginal cost when 25 units are produced.
(b) Find the total cost of producing 25 units.