Notes on ICNS 103

Chapter 14: 14.6 The Definite Integral, 14.7 The Fundamental
Theorem of Integral Calculus, 14.9 Area, 14.10 Area between
Curves: Chapter 17: 17.1 Functions of Several Variables, 17.2 Partial
Derivatives, 17.3 Applications of Partial Derivatives

1. Fundamental Theorem of Integral Calculus

If \(f \) is continuous on the interval \([a, b]\) and \(F \) is any antiderivative of \(f \) on \([a, b]\), then
\[
\int_{a}^{b} f(x) \, dx = F(b) - F(a).
\]

2. Properties of the Definite Integral

(a) If \(f \) is continuous and \(f(x) \geq 0 \) on \([a, b]\), then \(\int_{a}^{b} f(x) \, dx \) can be interpreted as the area of the region bounded by the curve \(y = f(x) \), the \(x \)-axis, and the lines \(x = a \) and \(x = b \).

(b) \(\int_{a}^{b} kf(x) \, dx = k \int_{a}^{b} f(x) \, dx \) where \(k \) is a constant

(c) \(\int_{a}^{b} (f(x) \pm g(x)) \, dx = \int_{a}^{b} f(x) \, dx \pm \int_{a}^{b} g(x) \, dx \)

(d) \(\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(t) \, dt \)

The variable of integration is a dummy variable in the sense that any other variable produces the same result—that is, the same number.

(e) If \(f \) is continuous on an interval \(I \) and \(a, b, \) and \(c \) are in \(I \), then
\[
\int_{a}^{c} f(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{b}^{c} f(x) \, dx.
\]

Example Determine the definite integrals.

(a) \(\int_{0}^{1} (x^{1/3} - x^{-1/3}) \, dx \)
(b) \(\int_{-1/3}^{20/3} \sqrt{3x^3 + 5} \, dx \)
(c) \(\int_{0}^{1} \frac{2x^3 + x}{x^2 + x^4 + 1} \, dx \)

(d) \(\int_{1}^{2} 4xe^{2x} \, dx \)
(e) \(\int_{1}^{2} \frac{3x}{\sqrt{4 - x}} \, dx \)
(f) \(\int_{e}^{3} \sqrt{x} \ln(x^5) \, dx \)

(g) \(\int_{3}^{27} 3(\sqrt{3x} - 2x + 1) \, dx \)
(h) \(\int_{0}^{1} 3^{2x} \, dx \)
(i) \(\int_{1}^{2} 5x\sqrt{5 - x^2} \, dx \)
Example Find the area of the region bounded by the graphs of the given equation.

(a) \(y = x^2 + 1, \ x \geq 0, \ x = 0, \ y = 3 \)
(b) \(y = 10 - x^2, \ y = 4 \)
(c) \(y = x^2, \ y = 2, \ y = 5 \)
(d) \(y = x^3 - 1, \ y = x - 1 \)

3. Partial Derivatives

Procedure to Find \(f_x(x, y) \) and \(f_y(x, y) \)

To find \(f_x \), treat \(y \) as a constant, and differentiate \(f \) with respect to \(x \) in the usual way.

To find \(f_y \), treat \(x \) as a constant, and differentiate \(f \) with respect to \(y \) in the usual way.

Example Let \(g(x, y, z) = \frac{3x^2y^2 + 2xy + x - y}{xy - yz + xz} \). Find \(g_y(1, 1, 5) \).

Example If \(z = xe^{x-y} + ye^{y-x} \), show that
\[
\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = e^{x-y} + e^{y-x}.
\]

4. Applications of Partial Derivatives

(a) \(\frac{\partial z}{\partial x} \) is the rate of change of \(z \) with respect to \(x \) when \(y \) is held fixed.

(b) \(\frac{\partial z}{\partial y} \) is the rate of change of \(z \) with respect to \(y \) when \(x \) is held fixed.

(c) If the function \(P = f(\ell, k) \) gives the output \(P \) when the producer uses \(\ell \) units of labor and \(k \) units of capital, then this function is called a production function. We define the marginal productivity with respect to \(\ell \) to be \(\partial P/\partial \ell \). Likewise, the marginal productivity with respect to \(k \) is \(\partial P/\partial k \).

Example Let the joint-cost function be given by \(c = x\sqrt{x+y} + 5000 \). Find the marginal cost with respect to \(x \) when \(x = 40 \) and \(y = 60 \).

Example Suppose a production function is given by
\[
P = \frac{k\ell}{2k + 3\ell}.
\]

(a) Determine the marginal productivity functions.

(b) Show that when \(k = \ell \), the marginal productivities sum to \(\frac{1}{5} \).