1. A function \(f \) is continuous at \(a \) if and only if the following three conditions are met:
 (a) \(f(a) \) exists.
 (b) \(\lim_{x \to a} f(x) \) exists.
 (c) \(\lim_{x \to a} f(x) = f(a) \).

2. A polynomial function is continuous at every point.

3. Discontinuities of a Rational Function:
 A rational function is discontinuous at points where the denominator is 0 and is continuous otherwise. Thus, a rational function is continuous on its domain.

 Examples:
 (a) Determine whether the function \(f(x) = \frac{x - 3}{x^2 - 9} \) is continuous at 3 and at -3.
 (b) Determine whether the function \(f(x) = \begin{cases} x + 2 & \text{if } x \geq 2 \\ x^2 & \text{if } x < 2 \end{cases} \) is continuous at 2 and at 0.
 (c) Find all points of discontinuity of each function:
 (1) \(f(x) = \frac{x^2 + 3x - 4}{x^2 - 4} \)
 (2) \(f(x) = \frac{x^4}{x^4 - 1} \)
 (3) \(f(x) = \begin{cases} 16x^2 & \text{if } x \geq 2 \\ 3x - 2 & \text{if } x < 2 \end{cases} \)

4. If \(f(x) \) is continuous \((a, b)\) and \(f(x) \neq 0 \) for all \(x \) in \((a, b)\), then either \(f(x) > 0 \) for all \(x \) in \((a, b)\) or \(f(x) < 0 \) for all \(x \) in \((a, b)\).

 Examples:
 (a) Solve the inequality \(14 - 5x - x^2 < 0 \).
 (b) Solve the inequality \(\frac{x^2 + 4x - 5}{x^2 + 3x + 2} \leq 0 \).
 (c) Solve the inequality \(\frac{2}{x - 1} \geq \frac{x}{x + 2} \).

Exercises Do Problems 10.3, 10.4.