1. A secant line is a line that intersects a curve at two or more points.

2. The tangent line to the curve at P is defined to be the common limiting position of the secant lines joining the point P with any other points of the curve.

3. The slope of a curve at a point P is the slope, if it exists, of the tangent line at P.

4. The slope of the tangent line at $(a, f(a))$ is given by

$$m_{\text{tan}} = \lim_{z \to a} \frac{f(z) - f(a)}{z - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}.$$

5. The derivative of a function f is the function denoted f' and defined by

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

provided that this limit exists. If $f'(a)$ can be found, then f is said to be differentiable at a, and $f'(a)$ is called the derivative of f at a or the derivative of f with respect to x at a. The process of finding the derivative is called differentiation.

6. Because the derivative gives the slope of the tangent line, $f'(a)$ is the slope of the line tangent to the graph of $y = f(x)$ at $(a, f(a))$.

7. If f is differentiable at a, then f is continuous at a. That is, differentiability at a point implies continuity at that point.

8. It is false that continuity implies differentiability. For example, consider the function $f(x) = |x|$. This function is continuous at 0 but not differentiable there.

Examples

(a) Use the definition of the derivative to find each of the following:

1. $f'(x)$ if $f(x) = 4x - 1$
2. $\frac{dp}{dq}$ if $p = 3q^2 + 2q + 1$
3. $\frac{d}{dx}\sqrt{x + 2}$

(b) Find an equation of the tangent line to the curve $y = \frac{3}{x - 1}$ at the point $(2, 3)$.

(c) Find an equation of the tangent line to the curve $y = (x - 7)^2$ at the point $(6, 1)$.

Exercises Do Problems 11.1.