Solutions to Homework 2

1.

\[g(x) = \sqrt{2 - 3x} : x = 0 \]

(i) \(g \) is defined at \(x = 0 \): \(g(0) = \sqrt{2} \).

(ii) \(\lim_{x \to 0} g(x) = \lim_{x \to 0} \sqrt{2 - 3x} = \sqrt{2} \), which exists.

(iii) \(\lim_{x \to 0} g(x) = \sqrt{2} = g(0) \)

Thus \(g \) is continuous at \(x = 0 \).

2.

\[f(x) = \begin{cases}
 x + 2 & \text{if } x \geq 2 \\
 x^2 & \text{if } x < 2
\end{cases} \]

\(f \) is defined at \(x = 2 \) and \(x = 0 \): \(f(2) = 4, f(0) = 0 \).

Because \(\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (x + 2) = 4 \) and \(\lim_{x \to 2^-} x^2 = 4 \), we have

\[\lim_{x \to 2^+} f(x) = 4 \]. In addition,

\[\lim_{x \to 2^-} f(x) = 4 \].

Since \(\lim_{x \to 0} x^2 = 0 \).

\(f \) is continuous at both \(2 \) and \(0 \).

Answer: Continuous at \(2 \) and \(0 \).

3.

The denominator of this rational function is zero only when \(x = \pm 2 \). Thus \(f \) is discontinuous only at \(x = \pm 2 \).

4.
5.

\[f(x) = \begin{cases} \frac{1}{x} & \text{if } x < 1 \\ 1 & \text{if } x \geq 1 \end{cases} \]

If \(x < 1 \), then \(f(x) = \frac{1}{x} \), which is a rational function whose denominator is zero when \(x = 0 \). Thus \(f \) is discontinuous at \(x = 0 \). If \(x > 1 \), then \(f(x) = 1 \), which a polynomial function and hence continuous. At \(x = 1 \), \(f \) is defined \(f(1) = 1 \).

Because \(\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} \frac{1}{x} = 1 \) and

\[\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x) = 1 \]

Since \(\lim_{x \to 1} f(x) = f(1) \), \(f \) is continuous at \(x = 1 \).

\[f \] is discontinuous at \(x = 0 \).

5.

\[x^2 - 4 < 0 \cdot f(x) = x^2 - 4 = (x + 2)(x - 2) \] has zeros \(\pm 2 \). By considering the intervals \((-\infty, -2)\), \((-2, 2)\), and \((2, \infty)\), we find \(f(x) < 0 \) on \((-2, 2)\).

Answer: \((-2,2)\)

6.

\((x + 5)(x + 2)(x - 7) \leq 0\)

\(f(x) = (x + 5)(x + 2)(x - 7) \) has zeros \(-5, -2\) and \(7\). By considering the intervals \((-\infty, -5)\), \((-5, -2)\), \((-2, 7)\) and \((7, \infty)\), we find \(f(x) < 0 \) on \((-\infty, -5)\) and \((-2, 7)\).

Answer: \((-\infty, -5), [-2, 7]\)

7.

\[f'(x) = x^2 + 4 \]

\[y' = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

\[= \lim_{h \to 0} \frac{[(x+h)^2 + 4] - [x^2 + 4]}{h} \]

\[= \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} (2x + h) = 2x + 0 = 2x \]

The slope at \((-2, 3)\) is \(y'(-2) = 2(-2) = -4 \).
8.

\[y' = \lim_{h \to 0} \frac{[3(x + h)^2 - 4] - [3x^2 - 4]}{h} \]
\[= \lim_{h \to 0} \frac{6xh + 3h^2}{h} = \lim_{h \to 0} (6x + 3h) = 6x \]

If \(x = 1 \), then \(y' = 6(1) = 6 \).

The tangent line at \((1, -1)\) is \(y + 1 = 6(x - 1) \) or \(y = 6x - 7 \).

9.

\[f(x) = x^2 - x - 3. \]

\[\frac{d}{dx}(x^2 - x - 3) \]
\[= \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]
\[= \lim_{h \to 0} \frac{[(x + h)^2 - (x + h) - 3] - [x^2 - x - 3]}{h} \]
\[= \lim_{h \to 0} \frac{2xh + h^2 - h}{h} = \lim_{h \to 0} (2x + h - 1) = 2x - 1 \]

10.

\[f(x) = \frac{6}{x} \]

\[y' = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{6}{x+h} - \frac{6}{x}}{h} \]

Multiplying the numerator and denominator by \(x(x + h) \) gives
\[y' = \lim_{h \to 0} \frac{6x - 6(x + h)}{hx(x + h)} = \lim_{h \to 0} \frac{-6h}{hx(x + h)} \]
\[= \lim_{h \to 0} \left[-\frac{6}{x(x + h)} \right] = -\frac{6}{x(x + 0)} = -\frac{6}{x^2} \]