Problem 13.1

1. Decreasing on \((-\infty, -1)\) and \((3, \infty)\); increasing on \((-1, 3)\); relative minimum \((-1, -1)\); relative maximum \((3, 4)\).

9. \(y = 2x^3 + 1\)

 \(y' = 6x^2\)

 CV: \(x = 0\)

 + +

 0

 Increasing on \((-\infty, 0)\); increasing on \((0, \infty)\); no relative maximum or minimum

36. \(y = 4x^2 + \frac{1}{x}\)

 \(y' = 8x - \frac{1}{x^2} = \frac{(2x-1)(4x^2 + 2x+1)}{x^2}\)

 CV: \(x = \frac{1}{2}\), but \(x = 0\) must be included in the sign chart because it is a point of discontinuity of \(y\).

 + +

 0 \frac{1}{2}

 Increasing on \(\left(\frac{1}{2}, \infty\right)\); decreasing on \((-\infty, 0)\)

 and \(\left(0, \frac{1}{2}\right)\); relative minimum when \(x = \frac{1}{2}\).
Problem 13.2

1. \(f(x) = x^2 - 2x + 3 \) and \(f \) is continuous over \([0, 3]\).
 \[f'(x) = 2x - 2 = 2(x - 1) \]
 The only critical value on \((0, 3)\) is \(x = 1 \). We evaluate \(f \) at this point and at the endpoints:
 \(f(0) = 3, f(1) = 2, \) and \(f(3) = 6 \).
 Absolute maximum: \(f(3) = 6 \);
 absolute minimum: \(f(1) = 2 \)

4. \(f(x) = \frac{1}{4} x^4 - \frac{3}{2} x^2 \) and \(f \) is continuous over \([0, 1]\).
 \[f'(x) = x^3 - 3x = x(x + \sqrt{3})(x - \sqrt{3}) \]
 There are no critical values on \((0, 1)\), so we only have to evaluate \(f \) at the endpoints:
 \(f(0) = 0 \) and
 \[f(1) = -\frac{5}{4} \]
 Absolute maximum: \(f(0) = 0 \);
 absolute minimum: \(f(1) = -\frac{5}{4} \)
12. \(f(x) = \frac{x}{x^2 + 1} \) and \(f \) is continuous over \([0, 2]\).

\[
f'(x) = \frac{(x^2 + 1) - x(2x)}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2}
\]

\[
= \frac{(1 + x)(1 - x)}{(x^2 + 1)^2}
\]

The only critical value on \((0, 2)\) is \(x = 1\). We have \(f(0) = 0\), \(f(1) = \frac{1}{2}\), and \(f(2) = \frac{2}{5}\).

Absolute maximum: \(f(1) = \frac{1}{2}\);
Absolute minimum: \(f(0) = 0\)

Problem 13.3

7. \(y = -2x^2 + 4x \)
 \(y' = -4x + 4 \)
 \(y'' = -4 < 0 \) for all \(x\), so the graph is concave down for all \(x\), that is, on \((-\infty, \infty)\).

16. \(y = \frac{7}{x^3} = 7x^{-3} \)
 \(y' = -21x^{-4} \)
 \(y'' = 84x^{-5} = \frac{84}{x^5} \)

Although \(y'' \) is not defined when \(x = 0\), \(y\) is not continuous there. Thus there is no possible inflection point. However, \(x = 0\) must be considered in concavity analysis. Concave down on \((-\infty, 0)\); concave up on \((0, \infty)\); no inflection point

31. \(y = 3xe^x \)
 \(y' = 3xe^x + 3e^x = 3e^x(x+1) \)
 \(y'' = 3e^x(l) + 3(x+1)e^x = 3e^x(x+2) \)
 \(y'' = 0 \) if \(x = -2\). Concave down on \((-\infty, -2)\); concave up on \((-2, \infty)\); inflection point when \(x = -2\).