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Abstract—We consider a downlink distributed antenna system
(DAS) in which transmit antennas are placed in a circular layout
and each mobile user is equipped with a single receive antenna.
Assuming zero-forcing beamforming transmission, a base station
randomly selects users to which it transmits data. We derive the
upper bound on a sum of all users’ achievable rates and use
the bound to estimate the optimal radius of the antenna layout
that maximizes the sum rate. Numerical examples show that the
optimal radius depends on the number of transmit antennas,
signal-to-noise ratio, and variance of user density. The sum rate
of DAS with optimized placement of transmit antennas can be
significantly higher than that of a co-located antenna system
(CAS).

Index Terms—Distributed antenna system (DAS), circular
antenna layout, downlink, zero-forcing beamforming, nonuniform
user density, sum-rate analysis.

I. INTRODUCTION

Multiple-antenna communication can increase spectral effi-

ciency and diversity. In a traditional downlink transmission, all

transmit antennas are located at the base station, which is at the

cell center. In recent years, a distributed antenna system (DAS)

in which transmit antenna ports are distributed throughout the

cell, has gained interest due to its improved coverage and

capacity over a co-located antenna system (CAS) [1], [2].

In this work, we assume that the base station employs a

zero-forcing beamforming transmission in which a transmit

beamforming vector for a user is selected such that there

is no interference affecting other users. Users served at any

given time are randomly selected by the base station. Zero-

forcing beamforming is much simpler than dirty-paper coding,

and approaches the optimum as the number of users tends to

infinity [3]. To maximize a sum ergodic rate in a multiple-input

multiple-output (MIMO) downlink, a user selection scheme

was proposed in [4] while the number of users served was

optimized in [5], assuming a large number of transmit anten-

nas. References [3]–[5] assumed co-located transmit antennas.
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For DAS, placement of distributed antenna (DA) ports in a

cell can significantly affect the system performance [6]–[10].

In [6], single-antenna DA ports in either a single-cell or a

two-cell model were assumed and location of DA ports was

determined by maximizing the lower bound on received signal-

to-noise ratio (SNR). The results shown in [6] were extended

to DAS with multiple-antenna DA ports by [7]. Both work [6],

[7] assumed uniform user distribution in the cell. In [8], a

circular antenna layout with nonuniform user distribution was

considered and optimized. In [10], the optimal layout radius

was analyzed with a large system limit in which the number of

DA ports and users tend to infinity with a fixed ratio. However,

the system in [8], [10] was assumed to serve one user at a time.

In [9], placement of DA ports was investigated for uplink DAS

whose performance was measured by cell averaged symbol

error rate.

In this work, we are interested in optimizing placement

of single-antenna DA ports of a downlink single-cell DAS.

All DA ports are placed in a circular layout whose center

is at the cell center similar to models considered by [8]–

[10]. We assume a zero-forcing beamforming transmission in

which multiple users can be served by the base station with no

interference. The number of users served at any given time is

less than or equal to the number of DA ports. We analyze the

upper bound of the sum achievable rate of all users, which

depends on the number of DA ports, number of users, user

distribution, and radius of the antenna layout. We show that

the radius of the antenna layout that maximizes the analytical

upper bound on the sum rate is a good approximation of the

optimal radius that maximizes the sum rate. Our results apply

to any user distribution with uniform angular distribution.

Numerical example shows that DAS with the optimized DA

port placement and a large number of DA ports can outperform

CAS by as much as 25%.

II. SYSTEM MODEL

We consider a single-cell downlink channel with a base

station consisting of N distributed ports with single transmit

antenna each and K ≤ N mobile stations or users each
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equipped with a single antenna. These DA ports are connected

to a central processor via optical fiber. We assume the cell is

circular with radius R and all DA ports are uniformly placed

on the circular layout with radius r ≤ R. There is no antenna

port at the center of the cell. Fig. 1 illustrates the antenna

layout with 6 DA ports shown with gray circles. This assumed

antenna configuration has been shown to maximize a sum

achievable rate with a moderate number of transmit antennas

and uniform user distribution [6].
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Fig. 1. A circular antenna layout with N = 6 is shown.

For a discrete-time model, a transmitted signal is denoted

by the N × 1 transmitted vector

x =

K
∑

k=1

wkbk (1)

where wk is the N × 1 transmit beamforming vector for user

k and bk is a transmitted symbol for user k. For user k, the

received vector is given by

yk = h
∗
kx+ nk (2)

where the 1×N channel vector for user k

hk =
[

gk,1d
−α

2

k,1 gk,2d
−α

2

k,2 · · · gk,Nd
−α

2

k,N

]

, (3)

nk is an additive white Gaussian noise with zero mean and

variance σ2
n, and (·)∗ denotes complex conjugate. Channel

vector in (3) reflects both large and small scale fading where

gk,n denotes a fading coefficient between user k and DA port

n, dk,n denotes the distance between user k and DA port n,

and α denotes a path-loss exponent. We note that the fading

channel for each pair of user and transmit antenna is assumed

to be flat. Assuming ideal scattering and uniform channel

gain, gk,n’s are independent complex Gaussian with zero mean

and unit variance. d
−α

2

k,n accounts for signal degradation with

α ranging between 2 and 4, depending on the terrain and

propagation environment.

Substituting (1) into (2) gives

yk = h
∗
kwkbk + h

∗
k(

K
∑

i=1
i6=k

wibi) + nk (4)

where the second term on the right-hand side is the interfer-

ence caused by other users. Thus, the corresponding achievable

rate for user k is given by

Rk = log2



1 +
Pk|h

∗
kwk|

2

σ2
n +

∑K
i=1
i6=k

Pi|h∗
kwi|2



 (5)

where the transmitted power for user k is Pk = E|bk|
2.

With zero-forcing beamforming transmission, user k ’s

transmit beamforming vector wk is selected such that there

is no interference from other users as follows

h
∗
iwk = 0 for ∀i 6= k. (6)

Let W = [w1 w2 · · · wK ] denote an N×K matrix whose

columns are transmit beamforming vectors. The zero-forcing

solution is given by [11]

W = H
†(HH

†)−1 (7)

where the K ×N channel matrix

H =
[

h
T
1 h

T
2 · · · h

T
N

]T
(8)

and (·)† and (·)T denote Hermitian transpose and transpose,

respectively. The associated achievable rate for user k is given

by

Rk = log2

(

1 +
Pkγk
σ2
n

)

(9)

where the effective channel gain for user k is the inverse of

the (k, k) entry of (HH
†)−1 as follows [12]

γk =
1

[(HH†)−1]k,k
(10)

and the expected sum rate over all channel realization is given

by

R =

K
∑

k=1

E[Rk]. (11)

The sum rate in (11) is a function of r, which is a distance

between all DA ports to the cell center. We would like to find

the optimal r that maximizes the sum rate as follows:

ropt = arg max
0<r≤R

R. (12)

The optimization problem in (12) can not be solved analyti-

cally since a closed-form expression for the expected sum rate

R is not tractable.



III. OPTIMIZING ANTENNA PLACEMENT

Instead of directly analyze R, we derive its upper bound.

First, for each user k, we define the 1×N channel vector h̄k

with all distances between user k and all DA ports replaced

with the minimum distance as follows

h̄k , (dmin
k )−

α

2 [gk,1 gk,2 · · · gk,N ] (13)

where

dmin
k = min

1≤n≤N
dk,n. (14)

Thus, the expected strength of the channel with the minimum

distance is larger or equal to that of the actual channel

E|hk|
2 ≤ E|h̄k|

2. (15)

We define the effective channel gain with dmin
k as follows

γ̄k ,
1

[(H̄H̄†)−1]k,k
(16)

where H̄ =
[

h̄
T
1 h̄

T
2 · · · h̄

T
N

]T
. Because of (15), re-

placing all distances between user and antenna ports with

the minimum distance gives the upper bound on the effective

channel gain as follows

γk ≤ γ̄k. (17)

In other words, the upper bound γ̄k is obtained from the system

in which all transmit antennas are co-located with distance

dmin
k away from user k.

With the result in [12], we can derive the probability density

function (pdf) for γ̄k given by

fγ̄k
(x) =

(dmin
k )α

(N −K)!

(

(dmin
k )αx

)N−K
e−(dmin

k
)αx. (18)

Hence, the upper bound on the achievable rate for user k is

given by

Rk ≤ R̄k , log2

(

1 +
Pkγ̄k
σ2
n

)

. (19)

Conditioned on the minimum distance dmin
k , the expected

upper bound for user k can be evaluated as follows

EH

[

R̄k|d
min
k

]

=

∫ ∞

0

log2

(

1 +
Pkx

σ2
n

)

fγ̄k
(x) dx. (20)

where the expectation is over channel realization.

We assume that all K users are randomly selected by the

base station. Hence, dmin
k is a random variable. Next we will

average E
[

R̄k|d
min
k

]

over dmin
k . Without loss of generality, we

assume that the DA port that is closest to the user is located

at the point (r, 0) in a Cartesian coordinate in which the cell

center is located at the origin (see Fig. 1). The minimum

distance can be expressed as [10]

dmin
k =

√

s2k + r2 − 2skr cos(θk) (21)

where sk denotes the distance from user k to the cell center

and θk is the polar angle between the antenna located at (r, 0)
and the user. Fig. 1 shows sk, θk, and dk,1, which equals

dmin
k for the shown location of user k. In general, sk and θk

are random variables whose pdf’s depend on how users are

distributed in the cell. Here we assume that users are located

uniformly in all angles. Thus, the pdf for θk is given by

fθk(θ) =
1

2π
, for − π ≤ θ ≤ π. (22)

Combining (20), (21), and (22), we obtain the expected

upper bound as follows

E[R̄k] =

∫ R

0

(∫ π

−π

EH

[

R̄k|d
min
k

] 1

2π
dθ

)

fsk(s) ds (23)

where fsk(·) denotes the pdf for sk. The two popular types of

user density are uniform and Gaussian or normal. For uniform

density,

fsk(s) =
2s

R2
, for 0 ≤ s ≤ R, (24)

and for Gaussian or normal density,

fsk(s) =
s

σ2
e−

s
2

2σ2 , for 0 ≤ s ≤ R (25)

where σ2 denotes the variance of Gaussian density. Substi-

tuting either (24) or (25) or other pdf’s for sk into (23), the

upper bound in (23) can be evaluated by any conventional

numerical method.

We define the upper bound for the sum rate as follows

R ≤ R̄ =

K
∑

k=1

E[R̄k]. (26)

With the assumptions that all user signals are transmitted

with equal power and are propagated through independent

identically distributed channels, and all users are randomly

selected, the upper bound on the rate is then the same for all

users. We can find the antenna layout radius that maximizes

the upper bound as follows

r̄opt = arg max
0≤r≤R

R̄ = arg max
0≤r≤R

E[R̄1]. (27)

We note that r̄opt found from (27) may not be the same as

the optimal radius ropt. However, from results of numerical

simulations that we have seen, r̄opt is usually close or equal

to ropt.

IV. NUMERICAL RESULTS

In this section, we compare simulation results obtained from

Monte Carlo simulations with analytical results derived in

Section III. We assume that the cell radius R is 100 meters,

the path-loss exponent α is 3, and transmitted power for all

users is equal.

In Fig. 2, we assume DA ports are installed at radius r = 60
meters and user density is uniform. Shown are the sum rate

for two DAS’s with N = K = 6 and N = 20,K = 15.

As expected, the sum rate increases with SNR. We verify the

analytical bound derived in Section III with the simulation of

CAS with the same set of minimum distances as DAS, and

see that the analytical results match with the simulation ones.

However, with the given r, the analytical upper bounds are

loose and can be twice as large as the actual sum rate. We
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Fig. 2. Analytical bounds and actual sum rates are shown with different SNR
for r/R = 0.6, and for two system sizes N = 20,K = 15 and N = K = 6.

expect the bound to be tighter when r/R is very close to

zero.

In Fig. 3, sum rates are plotted with different radii r for

DAS’s with N = K = 6 and N = 20,K = 15 at SNR 60

dB. We observe the peak sum rate occurs at r/R = 0.7 for

both the upper bound and the actual sum rate for DAS with

N = 20 and K = 15. Similarly, the optimal radius r/R = 0.6
for both the upper bound and the actual sum rate for DAS with

N = K = 6. Although the analytical upper bound is loose and

is only tight at r = 0, it gives the radius that closely matches

with the optimal radius that maximizes the sum rate. From the

figure, performance at r = 0 is that of CAS. We note that for

the smaller system, i.e., N = K = 6, the sum rate of CAS is

comparable to that of DAS. However, for the larger system,

DAS with the optimal radius can outperform CAS by as much

as 25%.

Fig. 4 shows simulated sum rates with different SNR’s for

DAS with N = 3 and K = 3. Dash-dot lines denote sum

rates with the optimal radii ropt while solid lines denote sum

rates with radii r̄opt obtained from (27). We note that r̄opt,
which is obtained from the upper bound analysis, performs

close to the optimum. The gap between the two is minimal for

low SNR and small for large SNR. Results for both uniform

and normal user densities are shown. We see that normal user

density results in larger sum rate than uniform density. In other

words, sum rate is larger when users are more concentrated

around the cell center. This is to be expected due to smaller

degradation of signal power.

In Fig. 5, we assume users are placed randomly with

uniform density in the cell and the number of transmit antennas

is equal to that of users served (N = K). The optimal radius

for the antenna placement normalized with the cell radius
ropt
R

is shown to increase with the number of transmit antennas and

SNR. For low to moderate SNR, ropt increases faster with
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Fig. 3. Sum rates are plotted with different r/R for SNR at 60 dB and two
system sizes: N = 20,K = 15 and N = K = 6.
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Fig. 4. Sum rates with DA ports placed at radius either ropt or r̄opt are
shown with SNR for two types of user density.

the number of transmit antennas N . This is in contrast to

a high SNR regime in which ropt slowly increases with N .

The results apply for a single-cell system or cellular system

with a large frequency reuse factor. For the system with small

frequency reuse factor, our results may not be accurate due

to a substantial presence of inter-cell interference. Fig. 5 also

compares ropt with r̄opt. We see that generally r̄opt can predict

the optimal radius quite well.

The optimal radius is plotted with variance of Gaussian user

density σ2 in Fig. 6 for DAS with N = K = 6 and SNR at

either 10 or 60 dB. We note that the radius that maximizes sum

rate increases with σ2. It is not difficult to see that as more

users move away from the cell center (larger σ2), the antenna

ports should be placed further away from the cell center as



2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of antennas (N)

r 
/ 

R

 

 

r̄opt/R

ropt/R

SNR = 60 dB

SNR = 10 dB

Fig. 5. The optimal radius for antenna placement ropt is compared with
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well. Again we remark that from the figure, r̄opt is close to

ropt.
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Fig. 6. Assuming Gaussian user density with variance σ2, the optimal radius
for antenna placement ropt is compared with the suboptimal r̄opt obtained
from the upper bound analysis for different values of σ2, N = K = 6, and
SNR at either 10 or 60 dB.

V. CONCLUSIONS

We derived the upper bound on a sum rate for downlink

DAS with circular antenna layout. The radius of the antenna

layout that maximizes the analytical bound was shown to

predict the optimal radius very well. We found that the optimal

radius increases with the number of transmit antennas, SNR,

and variance of user density. The numerical example showed

that operating at the optimal radius in DAS can outperform

CAS by as much as 25%. Thus, the analytical results derived

in this work should provide a good practical guideline for

deploying DAS. Although we only considered a single-cell

channel in this work, the contribution should apply to any

multi-cell model with large frequency-reuse factor as well. For

a multi-cell system with small frequency-reuse factor or with

dominant inter-cell interference, the optimal antenna layout

remains a open problem. Here we considered only Rayleigh

fading model. Other practical fading models can be considered

in the future work.
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