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Abstract—Signature quantization for reverse-link Direct Se-
quence (DS)- Code Division Multiple Access (CDMA) is consid-
ered. A receiver assumed to have perfect estimates of channel
and interference covariance, selects the signature that maximizes
signal-to-interference plus noise ratio (SINR) for a desired user
from a signature codebook. The codebook index corresponding
to the optimal signature is relayed to the user with finite number
of bits via a feedback channel. Previously, it was shown that a
Random Vector Quantization (RVQ) codebook, which contains
independent isotropically distributed vectors, is optimal (i.e.,
maximizes SINR) in a large system limit in which number of
interfering users, processing gain, and feedback bits tend to
infinity with fixed ratios. Here we derive exact expressions for
a large system SINR for the user whose signature is selected
from RVQ codebook. We assume that the receiver is linear
minimum mean squared error (MMSE) and consider both ideal
and multipath fading channels.

I. INTRODUCTION

To improve user performance in Direct Sequence (DS)-
Code Division Multiple Access (CDMA), a signature code
of the user can be adapted to avoid interference from other
users. Several work in the literature [1]–[7] have investigated
a joint transmitter-receiver signature optimization and showed
that a performance gap between optimized and random sig-
natures can be substantial. However, knowledge of channel
and interference covariance is required at both the transmitter
and receiver. All of the work mentioned assume that perfect
estimates of channel and interference covariance are available.
This assumption, especially at the transmitter, is not very
practical.

In a wireless system, a receiver typically estimates channel
coefficients and interference covariance from pilot signals. The
accuracy of the estimation increases with amount of available
pilots. The transmitter, on the other hand, is usually unable
to directly estimate the forward channel. However, channel
information may be obtained from the receiver via a feedback
channel. In recent years, many researchers [8]–[15] have
proposed feedback schemes in which the receiver computes
and quantizes the optimal signature and relays the quantized
coefficients to the transmitter via a rate-limited feedback
channel. Reference [10]–[15] consider multiantenna systems
where spatial signatures are optimized and quantized. Here
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our interest is signature quantization in DS-CDMA and its
performance, which depends largely on quantization codebook
and available feedback rate.

The signature codebook is known a priori at both the
transmitter and receiver. With B feedback bits, the receiver
selects the signature vector, which maximizes the instanta-
neous signal-to-interference plus noise ratio (SINR), from 2B-
signature codebook and relays the corresponding index to the
transmitter via an error-free feedback channel. Reference [8]
proposed a Random Vector Quantization (RVQ) codebook,
which consists of independent isotropically distributed vectors
and showed that the RVQ codebook is optimal (i.e., maximize
the SINR over all codebooks) in a large system limit in which
number of users K, processing gain N , and feedback bits B
tend to infinity with fixed K̄ = K/N and B̄ = B/N . The
approximation for a large system SINR was derived in [8] for
the minimum mean squared error (MMSE) receiver and was
shown to predict the performance of a finite-size system well
for small B̄.

Recently, [9] derives the exact expression of a large system
SINR for RVQ with a matched filter. (Similar results for the
performance of RVQ in multiantenna system were derived
in [12].) We apply similar techniques used in [9], [12] to
derive expressions for asymptotic SINR for RVQ signature
with linear MMSE receiver. We first consider a nonfading
channel and derive an exact expression for a large system
SINR, which is a function of K̄ and B̄. Comparison between
the large system SINR and the approximation derived in [8],
which over-estimates the performance for large B̄, is shown.
Numerical examples show that the large system results predict
the performance of the finite-size system well. We also extend
the results to flat and frequency-selective fading channels and
the case in which users are assigned different transmit powers.

II. SYSTEM MODEL

We consider a discrete-time reverse-link synchronous DS-
CDMA in which there are K users and processing gain N .
The N × 1 received vector is given by

r =
K∑

k=1

√
AkHkskbk + n (1)

where
√

Ak is the amplitude of user k, Hk is the N × N
channel matrix for user k, sk is the N ×1 signature vector for
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user k, bk is the transmitted symbol for user k, and n is the
additive white Gaussian noise with zero mean and covariance
σ2

nI . For ideal nonfading channel, Hk = I . For frequency-
selective channel, we assume that the symbol duration is much
longer than the delay spread and, thus, we discard any inter-
symbol interference. Assuming that each user traverses L
fading paths, we have

Hk =




hk,1 0 · · · 0 0 · · · 0
... hk,1

... 0
...

hk,L

...
. . . 0

... 0
0 hk,L hk,1 0 · · · 0
... 0

. . .
... hk,1 0

0
... hk,L

...
. . . 0

0 0 · · · 0 hk,L · · · hk,1




(2)

where fading gains for user k, hk,1, . . . , hk,L, are independent
complex Gaussian random variables with zero mean and
variances E|hk,1|2, . . . , E|hk,l|2, respectively. For flat fading
channel (L = 1), Hk = hk,1I .

We consider a linear MMSE receiver, which is shown to
be robust in suppressing multiple-access interference [16].
Without loss of generality, we consider user 1 whose MMSE
receive filter is given by

c1 = R−1s̃1 (3)

where we let s̃k � Hksk and the received covariance

R = E[rr†] =
K∑

k=1

Aks̃ks̃†
k + σ2

nI, (4)

assuming that bk’s are independent and identically distributed
(i.i.d.) with zero mean and unit variance. The associated SINR
for user 1 is given by

β1 =
|√A1c

†
1s̃1|2

c†1R1c1

=
A1s

†
1H

†
1R−1

1 H1s1

s†
1s1

(5)

where the interference-plus-noise covariance

R1 = S̃1A1S̃
†
1 + σ2

nI, (6)

S̃1 is the N×(K−1) effective signature matrix whose columns
consist of s̃k, ∀k �= 1 and A1 is the (K−1)×(K−1) diagonal
matrix whose diagonal entries are A2, . . . , AK . We note that,
for given R1 and H1, the SINR for user 1 is a function of
the signature s1.

The receiver, which is assumed to have a perfect estimate
of the interference covariance R1, can optimize the signature
for the desired user to avoid interference from other users.
The optimal s1, which maximizes (5), is the eigenvector
of H†

1R−1
1 H1 corresponding to the maximum eigenvalue.

Ideally, the receiver sends the optimal signature back to user
1 via a feedback channel and the user changes the signature,
accordingly. Practically, a feedback channel has limited rate.
Thus, the receiver can only relay finite number of feedback
bits to the user. (We assume that the feedback does not incur

any errors.) With B bits, the receiver selects the signature
from a signature set or codebook containing 2B signatures.
This codebook is designed a priori, and is known at both
the user and receiver. The performance of the optimized
user depends on the codebook. Several work [8], [10]–[14],
[17] focused on codebook design and analyzed the associated
performance. (All of work previously mentioned except [8]
are in context of spatial signature in a multiantenna channel.)
In this work, we analyze the performance of a Random
Vector Quantization (RVQ) codebook proposed by [8]. RVQ
codebook V = {v1, . . . ,v2B} in which vj’s are independent
isotropically distributed with unit norm (‖vj‖ = 1). In other
words, signature vectors in RVQ codebook are uniformly
distributed on a surface of an N -dimensional unit sphere. In
[8], [9], [12], RVQ was shown to maximize SINR over all
quantization codebooks in a large system limit to be defined.

Given the codebook V , the receiver selects

s1 = arg max
vj∈V

{
β1(vj) =

A1v
†
jH

†
1R−1

1 H1vj

v†
jvj

}
. (7)

The index of the optimal signature vector is relayed to user
1 via a feedback channel. The corresponding SINR for user
1 averaged over interfering signatures, channel matrices, and
codebook is given by

βrvq = E[ max
1≤j≤2B

β1(vj)]. (8)

We are interested in analyzing βrvq and how βrvq relates to
other system parameters (e.g., feedback bits B, number of
users K, and number of fading paths L).

III. LARGE SYSTEM SINR

Since vj’s in RVQ codebook are i.i.d., the corresponding
β1(vj)’s are also i.i.d. for given R1, and H1. Let fβ|R1,H1(·)
and Fβ|R1,H1(·) be probability density function (pdf) and
cumulative distribution function (cdf) for β1(vj), respectively.
The SINR with the optimal signature averaged over the
codebook is given by

EV [max{β(v1), . . . , β(v2B )}|R1,H1]

= 2B

∫ ∞

0

x[Fβ|R1,H1(x)]2
B−1fβ|R1,H1(x) dx. (9)

It is difficult to evaluate (9) for any finite N , K, L, and B.
For an ideal channel, it was shown that the SINR converges
to a deterministic value in a large system limit in which K,
N , and B all tend to infinity with fixed normalized load
K̄ = K/N and normalized feedback bits B̄ = B/N [8],
[9]. Applying theory of extreme order statistics [18] similar to
[8], the large system SINR with fading channel is given by

β∞
rvq = lim

(N,K,B,L)→∞
EV [max{β1, . . . , β2B}|R1,H1] (10)

= lim
(N,K,B,L)→∞

F−1
β|R1,H1

(1 − 2−B) (11)

where we assume that the empirical eigenvalue distribution
of R1 converges almost surely to a nonrandom limit and
limL→∞

∑L
l=1 E|hk,l|2 < ∞ for all k.
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Although RVQ is optimal in a large system limit [8],
it was shown to perform close to the optimal codebook
designed for a finite-size system [19]. Reference [8] derived
the approximation for β∞

rvq by approximating cdf for β1(vj) to
be Gaussian. The approximation is a function of K̄, B̄, and
σ2

n and is good for small B̄. For large B̄, it over-estimates the
actual performance. In this work, we derive exact expressions
for β∞

rvq.
We first consider the ideal channel (Hk = I,∀k). We

rearrange (11) to obtain

lim
(N,K,B)→∞

z→β∞
rvq

[1 − Fβ|R1(z)]
1
N = 2−B̄ . (12)

Similar to [9], [12], it can be shown that the left-hand side of
(12) is evaluated to

lim
(N,K,B)→∞

z→β∞
rvq

[1 − Fβ|R1(z)]
1
N = exp{−Φ(ρ∗, β∞

rvq)} (13)

where

Φ(ρ, β∞
rvq) =

∫
log(1 + ρ(β∞

rvq −
A1

τ + σ2
n

))fS1A1S†
1
(τ) dτ,

(14)

ρ∗ = arg max
0<ρ< 1

β∞
max−β∞

rvq

Φ(ρ, β∞
rvq), (15)

fS1A1S†
1
(·) is the asymptotic eigenvalue density for S1A1S

†
1,

S1 is the N × (K − 1) signature matrix whose columns are
s2, . . . , sK , and β∞

max is the asymptotic maximum eigenvalue
of A1R

−1
1 and corresponds to the SINR with infinite feedback

(B̄ → ∞).
Combining (12) and (13), β∞

rvq satisfies the following fixed-
point equation

Φ(ρ∗, β∞
rvq) = B̄ log(2). (16)

Suppose sk has independent complex Gaussian entries with
zero mean and variance 1/N (‖sk‖ → 1) and empirical
distribution of Ak converges to a limit. We can express (14)
as follows

Φ(ρ, β∞
rvq) = log(1 + ρ(β∞

rvq −
A1

σ2
n

)) + K̄νA1(ζΘ(ζ))

−K̄νA1(σ
−2
n Θ(σ−2

n )) − log(Θ(ζ)) + log(Θ(σ−2
n ))

+Θ(ζ) − Θ(σ−2
n )

(17)

where

ζ =
1 + ρβ∞

rvq

σ2
n + ρβ∞

rvqσ2
n − ρA1

, (18)

Θ(x) is the solution of the following fixed-point equation

K̄ =
1 − Θ(x)

1 − ηA1(xΘ(x))
, (19)

and η- and Shannon transforms of a random variable X with
pdf fX(·) are defined as follows [20]:

ηX(γ) =
∫

1
1 + γx

fX(x) dx (20)

νX(γ) =
∫

log(1 + γX)fX(x) dx. (21)

For an equal-power (A1 = . . . = AK = 1) system,
fA1(a) = δ(a − 1) and, thus,

ηA1(γ) =
1

1 + γ
, (22)

νA1(γ) = log(1 + γ). (23)

Substitute (22) and (23) into (17) and (19), respectively and
simplify. We can express (16) as follows.

Theorem 1: For K̄ ≤ 1, β∞
rvq satisfies the following equa-

tion

log(
K̄

1 − β∞
rvqσ2

n

− 1
β∞

rvq
) + (1 − K̄) log(

p

σ2
n

)

+ K̄ log(
w(p)
w(σ2

n)
) − (1 − K̄) log(

1 − v(p)
1 − v(σ2

n)
)

− v(p) + v(σ2
n) = B̄ log(2) (24)

where

w(x) =
1
2
(1 + K̄ + x +

√
(1 + K̄ + x)2 − 4K̄) (25)

v(x) =
1
2
(1 + K̄ + x −

√
(1 + K̄ + x)2 − 4K̄) (26)

and

p =
1 − β∞

rvqσ
2
n

K̄β∞
rvq − 1 + β∞

rvqσ2
n

− 1
β∞

rvq
+ σ2

n. (27)

For K̄ > 1 and B̄ ≤ B̄∗, β∞
rvq satisfies the following

equation

log(
K̄

1 − β∞
rvqσ2

n

− 1
β∞

rvq
) + log(

w(p)
w(σ2

n)
)

− (K̄ − 1) log(
K̄ − v(p)
K̄ − v(σ2

n)
) − v(p) + v(σ2

n) = B̄ log(2)

(28)

where

B̄∗ =
1

log(2)
(log(K̄ −

√
K̄ + σ2

n) + K̄ log(
√

K̄)

− K̄ log(
√

K̄ − 1) −
√

K̄ − log(w(σ2
n))

+ (K̄ − 1) log(1 − v(σ2
n)

K̄
) + v(σ2

n)). (29)

For K̄ > 1 and B̄ > B̄∗,

β∞
rvq = β∞

max(1 − 2−B̄ [exp{1
2
K̄ log(K̄)

− (K̄ − 1) log(
K̄
√

K̄ − K̄

K̄ − v(σ2
n)

) − log(w(σ2
n))

+ v(σ2
n) −

√
K̄}]). (30)

Due to limited space, the derivation is not shown here.
For a flat-fading channel (L = 1), we can combine the chan-

nel gain |hk,1|2 for user k with its transmit power Ak. That
is the diagonal matrix A1 = diag{|h2,1|2A2, . . . , |hK,1|2AK}
whose empirical distribution converges to a nonrandom limit.
With an asymptotic distribution for diagonal entries of A1, we
can apply (16) - (19) to obtain the output SINR β∞

rvq.
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Fig. 1. Shown is a large system SINR versus normalized feedback bit B̄
with different normalized loads K̄ = 0.25, 0.5, 1, 1.25 and SNR = 5 dB.

For frequency-selective fading, the signal of each users
is assumed to propagate L discrete chip-spaced paths. The
channel matrix for user k is shown in (2). First, we as-
sume that L is finite and does not grow with N . Thus,
the number of paths per processing gain L̄ = L/N →
0. To compute β∞

rvq, we require the asymptotic eigenvalue
distribution of R1 (6). Reference [21] showed that the
asymptotic eigenvalue distribution of R1 with L-path chan-
nels (2) equals that of R1 with flat-fading channels and
A1 = diag{A2(

∑L
l=1 |h2,l|2), . . . , AK(

∑L
l=1 |hK,l|2)}. Thus,

a multipath interferer is asymptotically equivalent to a single-
path interferer with combined gain of

∑L
l=1 |hk,l|2. For

L → ∞ with fixed L/N , the same result applies as long
as limL→∞

∑L
l=1 E|hk,l|2 < ∞, for all k.

IV. NUMERICAL RESULTS

Fig. 1 shows the asymptotic SINR in Theorem 1 versus
normalized feedback bit B̄ with different normalized loads
K̄ = 0.25, 0.5, 1, 1.25. As expected, the SINR increases with
normalized feedback and decreases with normalized load. For
K̄ = 0.25, RVQ achieves close to the single-user performance
with approximately B̄ = 0.5 (0.5 bits per processing gain or
degree of freedom). As number of interfering users increases,
amount of feedback required also increases to achieve a target
SINR. For example, B̄ = 3 is needed for system with K̄ =
1 to achieve close to the single-user performance. We also
compare the asymptotic results with simulation results marked
by pluses in Fig. 1. We note that the large system results
predict the performance of finite-size systems (N = 12) well.
As N increases, the gap between the simulation and analytical
results is expected to be closing.

RVQ codebook requires an exhaustive search to locate the
optimal signature. The search complexity increases exponen-
tially with feedback bits B. (For B̄ = 3, number of entries
in RVQ codebook is 236.) Thus, we do not have simulation
results for a large B.

0 0.5 1 1.5 2 2.5 3 3.5 4
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IN
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RVQ SINR, K/N = 0.75, SNR = 10 dB

Gaussian Approx. (MMSE Rx)
Large system, 
MMSE Rx       

N = 12, 
MMSE Rx 

Large system, MF Rx

Fig. 2. The large system SINR for MMSE receiver is compared with the
approximation derived in [8] and the large system SINR for matched filter
derived in [9]. Also shown is the simulation result for N = 12, K̄ = 0.75
and SNR = 10 dB.

In Fig. 2, we compare the asymptotic SINR in Theorem 1
with the approximation derived in [8] for K̄ = 0.75 and
SNR = 10 dB. Also shown is the simulation results with
N = 12. The large system SINR is closer to the simulated
performance than the approximation. We also show the RVQ
performance of a matched filter derived in [9] with that
of MMSE receiver derived here. The performance difference
can be substantial for small to moderate B̄. With 1 feedback
bit per degree of freedom, the MMSE receiver outperforms
a matched filter by as much as 30%. However, an MMSE
filter is more complex than a matched filter. Therefore, there
is a performance tradeoff between feedback and receiver
complexity.

We also simulated a multipath fading channel in which
each user’s signal transverses 2 paths with different gains
(E|hk,1|2 = 0.9 and E|hk,2|2 = 0.1,∀k). Furthermore, K
interfering users are divided into 2 groups. K1 users transmit
signal with Ak = P1 while K2 users with Ak = P2. This
scenario may follow from a system with differentiated quality
of service. We obtain the large system SINR from (17)-(21)
with the asymptotic distribution of A1

fA1(a) = K̄1δ(a − P1) + K̄2δ(a − P2) (31)

where normalized loads K̄1 = K1/N and K̄2 = K2/N . Both
the large system and corresponding simulated results with
K̄1 = K̄2 = 0.25 and different sets of P1 and P2 are shown
in Fig. 3. The large system performance closely approximates
the performance of the system with N = 32. As N grows,
the performance of a finite-size system will converge to that
of the large system. In this example, reducing the transmit
power of one group of users by 20 dB (P2 from 10 to 0.1)
decreases the required feedback to achieve 0.5 dB away from
the single-user performance by B̄ = 0.4.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.



0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

4.5

5

B̄

S
IN

R
 (

dB
)

SNR =5 dB; L =2; K̄ =0.5 (K̄1 =0.25, K̄2 =0.25)

Large system; P
1
 = 1, P

2
 = 0.1

Large system; P
1
 = 1, P

2
 = 10

Simulation; N = 32, P
1
 = 1, P

2
 = 10

Simulation; N = 32, P
1
 = 1, P

2
 = 0.1

Fig. 3. The large system SINR for multipath-fading CDMA with two groups
of users is shown with simulation results. SNR = 5 dB, number of paths
L = 2 for all users, and K̄ = 0.5.

V. CONCLUSIONS

We have shown expressions for a large system SINR for
RVQ with MMSE receiver, which is a function of normalized
load (number of users per degree of freedom) and normalized
feedback bit (number of feedback bit per degree of freedom).
Both nonfading ideal channel and multipath fading channel
were considered. The SINR of the quantized signature in-
creases with B̄. For a small load, RVQ achieves close to the
single-user performance with only fraction of feedback bit per
quantized signature coefficient. We compared performance of
the MMSE receiver with that of matched filter derived in [9]
and showed that the performance gap is large for small B̄.
The matched filter requires more feedback to achieve a target
SINR than the MMSE receiver does. However, the matched
filter is simpler.

In this work, we assume that the receiver can estimate
channel and interference covariances perfectly. In practice, a
very accurate channel estimation is achieved by a large amount
of training. How the performance of RVQ is affected by
imperfect channel estimate at the receiver (or limited training)
is studied by [22]. Here we considered signature quantization
for a single user. Performance of group of users with RVQ-
quantized signatures is more difficult to analyze and is an
interesting research problem.
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