Molecular Dynamics Simulations of the Interaction of Beta Cyclodextrin with a Lipid Bilayer

Wasinee Khuntawee,† Peter Wolschann,‡§ Thanyada Rungrotmongkol,*∥⊥ Jirasak Wong-ekkabut,*∥ and Supot Hannongbua∇

†Nanoscience and Technology Program, Graduate School, ‡Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, §Department of Biochemistry, Faculty of Science, and ∥Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand
‡Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, 14 Althan Straße 14, Vienna 1090, Austria
§Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
∥Department of Physics, Faculty of Science, Kasetsart University, 50 Phahon Yothin Road, Chatuchak, Bangkok 10900, Thailand
∇Computational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand

Supporting Information

ABSTRACT: Beta cyclodextrin (βCD) is well-known as a potent drug carrier improving drug solubility, stability, and bioavailability. The water layer adjacent to the membrane surface and lipophilic domain itself are a controlling barrier for drug transport. However, the molecular details of the interaction between βCD and the lipid membrane has not yet been clearly explained. Here, molecular dynamics simulations were performed to visualize the interaction process of the βCD molecule with the lipid bilayer for six microseconds in total. Our results show that βCD passively diffuses into the lipid bilayer by pointing its open secondary rim toward the lipid polar groups and then remains at the phosphate and glycerol-ester groups with hydrogen bond formation. The information obtained from this study may suggest that the association of βCD at the cellular membrane plays an important role for the transfer of drug and the extraction of cholesterol.

INTRODUCTION

Drug delivery systems (DDS) have been continuously developed with the aims to enhance therapeutic drug efficiency and consequently to reduce toxicity by the direct transportation to specific targets. Cyclodextrins (CDs) are used as potential drug carriers. Natural CDs are αCD, βCD, and γCD, composed of six, seven, and eight units of β-glucopyranose, respectively, with α-1,4 linkages (Figure 1). βCD is widely used in pharmaceutical and food industries because of low cost, easy synthetic accessibility, and suitable cavity size (0.60–0.65 nm) for the inclusion of small- and medium-sized drugs. βCD and some derivatives have been used in inclusion complexation with drugs, and they have been approved and marketed especially for oral drug delivery. The structure of the βCD molecule is that of a truncated cone with a hydrophilic outer surface and a relatively hydrophobic nanocavity. Therefore, a poorly watersoluble molecule can be inserted into the CD’s cavity leading to an increased solubility and consequently to a higher biological activity.

Based on biopharmaceutical drug classification, there are two main factors for efficient drug transport ability, the solubility and the permeation of the drug through biological membranes. Many experimental and theoretical studies have demonstrated that the aqueous solubility enhancement of lipophilic drugs by CDs inclusion leads to the increased drug efficacy. The βCD supported drug delivery may occur via two mechanisms. First, the drug dissociates from the βCD and then adsorbs into the membrane surface. Second, the drug−βCD complex

Figure 1. 2D structure of βCD showing the arrangement of glucose monomers. The atoms on the glucose ring representing the primary rim and the secondary rim are labeled in blue and red, respectively.

Received: March 19, 2015
Published: August 24, 2015
directly transfers into the membrane in which the association and permeability of βCD complexes are possibly controlled by the barrier of the unstirred water layer (UWL) at the membrane surface.11,12 The drug−βCD complexes permeate through the UWL to reach the membrane surface via passive diffusion but may not get into the membrane interior due to their size and other physicochemical properties.11–13 Actually, the binding of βCDs at the water−lipid interface has been experimentally proven by the extraction of cholesterol by βCDs.4,15 To date, there is no detailed study as to how the unstirred water layer and the membrane itself influence the association of the drug−βCD complex. As a very important prestep for the understanding of drug delivery at the membrane, the interactions of βCDs with the membrane have to be investigated.

Molecular understanding of the complex biological systems have been achieved by molecular dynamics (MD) simulations, which provided reliable and reasonable results comparable to experiments.16–19 The simulations in the lipid phase well described the interaction of small molecules with the lipid membrane.20–27 Wei et al. showed the agreement of computational and experimental studies for the translocation of ribose and its two diastereomers into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC).25 Moreover, the MD simulations have been extended to investigate physicochemical properties, host−guest interaction, and self-aggregation of sugar oligomers as cyclodextrins in both gas and solution phases.26–28 An understanding of CDs-based DDS as a drug loading can be carried out by the estimation of the binding affinity of drug to CD and complexity itself. The structure stability and phase solubility studies suggested that the hydrophobic molecule is bound properly in the cavity of CDs by 1:1,25–28 2:1,27,28,31 and 2:229,30 stoichiometry. The study of the complex architecture of βCD with hydrochlorothiazide (HCT) concluded that the formation of the HCT−βCD complex was enthalpy driven and the inclusion mode of HCT was highly dependent on its ionization state.32 On the other hand, the drug releasing may be described with the interactions of drug, CD, and the drug−CD complex with the lipid membrane.33 The studies of the exposing cells or model membranes to CDs have shown that the membrane cholesterol was removed from the lipid rafts.11,14,15,43–45 The MD simulation also showed that βCD can rapidly adsorb on the membrane with a consequence of cholesterol extraction. The ability of cholesterol extraction by head-to-head dimer βCD depended on the orientation, the distribution of βCD on the membrane surface, and the concentrations of cholesterol in the membrane.46,47 The mechanism to remove cholesterol from the lipid membrane was described by Lopez et al.48,49 The proper conformation for cholesterol extraction is that the hydroxyl rim of the βCD dimer bound to the membrane surface with hydrogen bonds. Moreover, the extraction energy was significantly reduced at low concentration of cholesterol because the lipids prevented the βCD-cholesterol interactions.50 Although the extraction of cholesterol by CDs has been studied to some extent,46,49 drug delivery and CD-lipid interaction are still not completely resolved. Therefore, a deeper understanding on βCD permeability in the biological membrane at the molecular level is required for the further development of CD-based drug delivery and drug release control. Here, we performed all-atom MD simulations with various starting geometries of βCD with regards to the POPC lipid bilayer model. The permeation behavior of βCD and its structure properties were of concern.

METHODOLOGY

System Preparation. MD simulations were performed with five different initial configurations as shown in Figure 2(a)-(e). In the BCD1-BCD3 systems, the βCD molecule with different orientations was located in the water phase at a distance of 3.5 nm in the z direction from the center of the bilayer. On the other hand, BCD4 and BCD5 represent the starting geometries when the βCD molecule is placed at the center of the lipid bilayer with parallel and perpendicular orientations, respectively. These setups allow us to study the behavior of βCD in the bilayer, and this technique has been widely used in the simulations of molecular transportation into the membrane.50–52 In the case of BCD5, the hydroxyl rims of βCD closely interacted with lipid head groups. Note that this initial configuration may have an influence on the trajectory. A symmetric structure of the βCD molecule was taken from our previous study,53 while the initial coordinates of the equilibrated 128 POPC bilayer were received from Tieleman’s group (http://wcm.ucalgary.ca/tieleman/downloads/popc128pdb). All simulations were performed by using the GROMACS package version 4.5.5.54 The POPC membrane was simulated by the modified Berger et al. parameters,19,55 and the βCD molecule was described by GROMOS 53A656 (the carbohydrate force field is equivalent to GROMOS 45A457). Note that a validation of the force field for βCD was carried out. The structural properties of βCD in water were compared with the result from the X-ray crystallography and also other MD simulations.58–61 The general perspectives of βCD structural properties are in agreement with the previous studies as shown in Supporting Information Table S1. The POPC lipid bilayers were fully solvated by 7122 molecules of single point charge (SPC) water62 in the simulation box size of 6.42 × 6.45 × 9.19 nm³.

Molecular Dynamics Simulation. After the energy minimization with the steepest descent algorithm for 10000 steps, classical MD simulations were carried out with NPT ensemble (the particle number, pressure, and temperature were kept constant) over one microsecond, except for the BCD5 system, where the simulation was extended to two microseconds. At least equilibrated trajectories over 500 ns were used for analysis. The integration time step was set at 2 fs, and the trajectories were sampled every 2 ps. The periodic boundary was applied in all directions. βCD, lipid, and water molecules were separately thermostated at 298 K by the Parrinello-Bussi
velocity rescale algorithm.\(^{63,64}\) Semi-isotropic pressure was applied by the Berendsen algorithm,\(^{65}\) at an equilibrium pressure of 1 bar both in the xy-plane and in the z-direction (bilayer normal) with a time constant of 3.0 ps and a compressibility of 4.5×10^{-5} bar$^{-1}$. The Lennard-Jones and the real-space parts of electrostatic interactions were cut off at 1.0 nm. The particle mesh Ewald (PME) method\(^{66-68}\) was used to compute long-range interactions with the reciprocal-space interactions evaluated on a 0.12 nm grid with cubic interpolation of order four. All bond lengths were constrained by the LINCS algorithm.\(^{69}\) The used simulation protocol has been tested and validated to work well for lipid systems.\(^{70,71}\) Molecular visualizations were done using Visual Molecular Dynamics (VMD) software.\(^{72}\)

RESULTS AND DISCUSSION

The results of this study have been divided into three sections as follows: I) The permeation and insertion of the βCD molecule into the lipid bilayer; the βCD molecule permeation into the POPC lipid bilayer and the effect of the βCD molecule insertion on the bilayer were shown. II) The interaction of the βCD molecule with the lipid bilayer; the number of hydrogen bonds between the βCD molecule and the lipid bilayer were calculated to determine the binding interaction between βCD and lipids. In addition, the influence of βCD on lipid bilayer properties was analyzed in terms of a 2D-density map of βCD and POPC as well as local lipid thickness. In the last section, III) The conformational change of the βCD molecule; the conformation and structural stability of the βCD molecule at water, water—lipid interface, and lipid bilayer were considered.

I. The Permeation and Insertion of the βCD Molecule into the Lipid Bilayer. The βCD molecule was initially set far away from the bilayer center (around 3.5 nm) to avoid the bias of the interactions between the βCD molecule and the lipid bilayer (as seen in Figure 2). This allowed the βCD to move and rotate freely in aqueous solution before approaching the bilayer surface. To study the permeation of the βCD molecule into the lipid bilayer, the distances in the z-axis of the βCD molecule (r_{βCD}) and its rims (r_{PβCD} and r_{SβCD} for primary and secondary hydroxyl sides, respectively) away from the lipid bilayer’s center were determined as a function of time (as seen in Figure 3). The center of mass (COM) of all lipid molecules, the COM of all atoms in the βCD molecule, the COM of C5 and O5 atoms, and the COM of C2 and C3 atoms were defined as the bilayer center, the βCD center, the primary rim center, and the secondary rim center, respectively. The tilt angle of the βCD molecule is characterized by the angle between vector $r_{βCD}$ (the vector pointing from the COMs of the primary to the secondary rims, as seen in Figure 1) and the bilayer normal.

The definitions of all mentioned parameters are illustrated in Figure 1 and Figure 2(a).

Figure 3 shows that the βCD molecule in the aqueous phase spontaneously moved toward the POPC bilayer and approached the bilayer surface within the first 15 ns. For the BCD1 and BCD3 systems, the βCD molecule attached to the bilayer with the secondary rim and readily permeated into the lipid bilayer within approximately 100 ns. The βCD remained underneath the phosphate group for the rest of the simulation time (Figure 5S1). For the BCD2 system, the βCD molecule first approached the bilayer surface with the primary rim, but it did not permeate into the bilayer over a hundred nanoseconds. After 175 ns simulation time, the βCD molecule rotated to have the secondary rim associated with the bilayer surface with the consequence of the βCD permeation within a few tens of nanoseconds as illustrated in Figure 3(b). After 500 ns, all βCD molecules are located in the region between phosphate and
glycerol-ester groups with the orientation of the secondary rim pointing toward the bilayer center, although starting from the various geometries (Figure 4). The averaged distances between

![Image](https://example.com/image.png)

Figure 4. Last snapshots of (a) BCD1-(d) BCD4 simulations were extracted at 1 μs. The primary rim of βCD, secondary rim of βCD, phosphorus atoms of lipid, and water molecules are presented by blue, red, green, and cyan spheres, respectively. The purple lines represent the POPC lipid molecules.

COMs of the βCD molecule and the bilayer as well as the tilt angle of the βCD molecule with respect to the bilayer are presented in Table 1. In agreement with our results, in the simulations of cholesterol extraction from the lipid monolayer or the bilayer, the head-to-head βCD dimer adsorbed on the membrane surface, however, the dimer oriented its primary rim toward the bilayer surface instead. Based on spectroscopic study and ab initio calculations, Mascetti et al. suggested that the βCD molecules preferred to stack in parallel to the pure cholesterol, mixed 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG)/cholesterol, and mixed 1,2-dimyristoyl-sn-glycero-3-phosphocholin (DMPC)/cholesterol lipid monolayers.

Next, the behavior of the βCD molecule and the effect of βCD insertion inside the bilayer were studied. Therefore, βCD was placed at the bilayer’s center with the r− vector alignments in parallel (BCD4) and perpendicular (BCD5) to the bilayer normal. For the BCD4 system, the βCD molecule is able to form hydrogen bonds with the glycerol-ester groups of the lipid bilayer and moved toward the water–lipid interface within 10 ns (in Figure 3(d)). The equilibrium location of βCD was 1.0 nm from the bilayer center corresponding to the position of the glycerol-ester group. No bilayer deformation has been observed within a simulation time of one microsecond. Unlike the BCD5 system (Figure 5), the βCD molecule was initially oriented in perpendicular to the bilayer normal; therefore, hydroxyl groups of the βCD formed hydrogen bonds with the lipid heads of both bilayer leaflets. At a longer simulation time, the βCD molecule rotated to be in parallel to the bilayer normal, and a water pore across the lipid bilayer could be formed (Figure 5(b)).

II. The Interaction of the βCD Molecule with the Lipid Bilayer. Hydrogen Bonding Interactions. The number of hydrogen bonds (H-bonds) between βCD, its rims, and the components of lipid head groups (phosphate and glycerol-ester moieties) were calculated using the usual geometric restrictions for hydrogen bonding. A hydrogen bond is defined by the distance between the donor and the acceptor (r_{HB}) < 0.35 nm and the deviation from the linearity <30°. The distance value of 0.35 nm corresponds to the first minimum of the radial distribution function (RDF) of water. Figure 6 shows the averaged number of hydrogen bonds at the last 500 ns and 1 μs for the systems of BCD1-BCD4 and BCD5, respectively. The βCD molecules in the BCD1-BCD3 systems interacted with the lipid headgroup with the hydroxyl groups at the secondary rim, and it was more preferred to form hydrogen bonds with phosphate groups than with glycerol-ester groups. On the other hand, this finding may suggest that the βCD interacted with the lipid surface stronger than the βCD dimer in the cholesterol extraction. In the BCD4 and BCD5 systems, the primary rim of βCD is associated with the glycerol-ester group of the lipid bilayer. This is in good agreement with the results of the

<table>
<thead>
<tr>
<th>systems/properties</th>
<th>r_{fCD} (nm)</th>
<th>r_{fPCD} (nm)</th>
<th>r_{sCD} (nm)</th>
<th>tilt angle (degree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCD1 (500–1000 ns)</td>
<td>1.50 ± 0.10</td>
<td>1.54 ± 0.10</td>
<td>1.40 ± 0.10</td>
<td>163.6 ± 8.0</td>
</tr>
<tr>
<td>BCD2 (500–1000 ns)</td>
<td>1.55 ± 0.13</td>
<td>1.61 ± 0.13</td>
<td>1.49 ± 0.13</td>
<td>148.8 ± 7.6</td>
</tr>
<tr>
<td>BCD3 (500–1000 ns)</td>
<td>1.65 ± 0.12</td>
<td>1.72 ± 0.12</td>
<td>1.54 ± 0.12</td>
<td>167.4 ± 5.9</td>
</tr>
<tr>
<td>BCD4 (500–1000 ns)</td>
<td>1.08 ± 0.13</td>
<td>1.17 ± 0.13</td>
<td>0.96 ± 0.13</td>
<td>157.0 ± 11.1</td>
</tr>
<tr>
<td>BCD5 (1000–2000 ns)</td>
<td>0.30 ± 0.14</td>
<td>0.37 ± 0.15</td>
<td>0.20 ± 0.12</td>
<td>161.4 ± 7.4</td>
</tr>
</tbody>
</table>

Table 1. Average Values of the Focused Parameters on βCD-Lipid Interactions for All Simulations (BCD1-BCD5) over the MD Production Period

DOI: 10.1021/acs.jcim.5b00152
simulation snapshots and the permeate depths of the βCD molecule into the bilayer. Interestingly, the number of hydrogen bonds of βCD with water molecules significantly decreased from 16 to 5 when the βCD molecule translocated from water–lipid interface into the bilayer. In conclusion, the results of the hydrogen bonds suggest the translocation of βCD deeply into the hydrophobic region of the lipid bilayer is unfavorable.

The Influence of the βCD on the Lipid Membrane Properties. To study the influence of βCD on the bilayer structure, the two dimension (2D) density on the xz-plane of the βCD molecule, some POPC components (i.e., phosphate groups and glycerol-ester groups), and water were plotted in Figure 7 as well as the plots on the xy-plane in Figure S2.

![Figure 7](image)

Figure 7. 2D-density maps on the xz-plane of the phosphate groups, glycerol-ester groups, water, and the βCD molecule for the BCD1-BCD5 systems, while those of the simulation of the POPC bilayer without βCD were given for comparison.

Supporting Information. The local thickness of the POPC bilayer on the xy-plane was also analyzed by means of the Voronoi algorithm as shown in Figure 8. All analyses were computed from the last 100 ns of trajectories after removing the motion of the βCD molecule. The adsorption of one βCD molecule on the lipid bilayer cannot deform the membrane structure as seen by the insignificant change of 2D-density maps and the bilayer thickness of the BCD1-BCD3 (r_{βCD} ~ 1.50−1.65 nm) relative to the simulation of the POPC bilayer without βCD. The association of βCD on the lipid surface slightly induced the decrease of membrane thickness at the βCD location. When the βCD stayed underneath the glycerol-ester groups in the BCD4 system (the distance from the bilayer center, r_{βCD} of ~1.08 nm) it caused less disturbance on the lipid bilayer. In contradictory, the tilted βCD in the BCD5 system could bind with the lipid head groups causing the dramatic change in lipid thickness and inducing a water pore formation. In addition, the 2D-density maps (Figure 7 and Figure S2) could confirm that the βCD molecule in the BCD1-BCD3 systems preferred to stay at the bilayer surface with the hydroxyl rim tilted toward the bilayer center. The density maps on the xy-plane (Figure S2) showed that a few head groups of POPC molecules occupied inside the βCD cavity and 7−9 POPE molecules bound outside the βCD cavity. The ability of the cyclodextrin to uptake lipid or cholesterol from the biomembrane had been intensively demonstrated by in vitro, in vivo, and in silico studies. This extraction may induce the pore formation or membrane change which had been reported by the leakage of potassium and hemoglobin at high concentration of cyclodextrins.

Moreover, to investigate the dynamical property of the βCD influence on the POPC bilayer, we calculated the diffusion coefficient of the βCD molecule. The mean squared displacement (MSD) for 100 ns at the last of the BCD1-BCD5 systems and also the simulation of βCD in water were plotted and then fitted based on Einstein’s relation \(\langle r^2 \rangle \sim 4Dt \), where \(D \) is the diffusion coefficient, and \(t \) is time. The calculation is presented in the average of the diffusion coefficient by fitting of MSD every 20 ns. The results showed that the βCD diffusion coefficient in the water of our simulation is \((0.280 \pm 0.170) \times 10^{-9} \text{ m}^2/\text{s}\). This value is in the same magnitude as the experimental data. The diffusion coefficient of βCD in the lipid phase, \((0.019 \pm 0.006) \times 10^{-9} \text{ m}^2/\text{s}\), is 1 order of magnitude smaller than in water. The slow diffusion of βCD in the lipid phase is related to strong binding of βCD with the lipid molecules.

III. The Conformational Change of the βCD Molecule.

To investigate the conformational change of the βCD molecule, we determined the intramolecular hydrogen bonds obtained by the number of hydrogen bonds of the secondary rim between the adjacent glucoses. The intramolecular hydrogen bonds are related to the stability of the CD molecule. The number of intramolecular hydrogen bonds of the BCD1-BCD3 systems was decreased continuously until there were no bonds left when the βCD molecule was attaching to the bilayer surface. The loss of this interaction was due to the preferable hydrogen bond formation between βCD and lipid head groups as well as water molecules (Figure 6) and resulted in the structural deformation as shown in Figure 9. The root-mean-square displacement (RMSD) of the hydroxyl side chains on each rim and glycosidic oxygens (O1) with respect to its anhydrous structure (in Table 2) showed that the primary rim of βCD was more flexible than the other one. The solvating water molecules affected the flexibility of the βCD structure for both side chain rims and the O1 core. In addition, the area of the βCD cavity was calculated by the following equation

\[
A = \frac{\pi}{4} \sum_{i=1}^{7} r_i^2
\]

where \(r_i \) is the distance between each hydroxyl group and the center of the O1 atoms, and the hydroxyl groups at 6- and 3-positions are used for representing the cavity area of primary and secondary rims, respectively. The cavity areas of the βCD molecule in water, water–lipid interface, and lipid phase are summarized in Table 2. As expected for the truncated cone.
geometry of the βCD molecule, the cavity area of the secondary rim was larger than that of the primary rim about 1.5-fold in water and lipid phases, whereas the shape of the βCD molecule in the lipid tail resembled a cylinder. The area cavities of the secondary rim in the lipid phase were ∼15% and ∼25% smaller than in water and water−lipid interface, respectively. These findings may be related to the mechanism of drug release in which the open and closed states of the secondary rim of the βCD molecule at different phases may play an important role.

CONCLUSION

Based on the MD simulations of the βCD molecule with the lipid bilayer in the microsecond time scale, we found that the βCD molecule spontaneously permeated toward the lipid surface but did not further proceed into the bilayer tail region in agreement with free energy calculations. No structural distortion of the bilayer could be observed when the βCD molecule attached to the bilayer surface. In contrast, the water pore formation in the lipid bilayer possibly occurred when the βCD molecule stayed inside the bilayer. The simulation results also showed that the secondary rim of the βCD molecule mainly contributed to the βCD−lipid interactions in which 5−7 hydrogen bonds between the secondary rim and the lipid heads were always found for the whole length of simulation time. Interestingly, the conformations of the βCD molecule changed at various solvation phases (water, water−bilayer interface, and bilayer) because of the loss of the intramolecular hydrogen bonds. An enlargement of area cavity at the water−bilayer interface could be observed. These findings might be related to the mechanism of drug releasing; however, there is still more work to be done in order to understand the function of βCD as a potential drug carrier.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jcim.5b00152.

Figures S1 and S2, Table S1, and references (PDF)

AUTHOR INFORMATION

Corresponding Authors

Phone: (J.W.) 66-2562-5555 ext 3545. Fax: 66-2942-8029. E-mail: jirasak.w@ku.ac.th.

Phone: (T.R.) 66-2218-5426. Fax: 66-2218-5418. E-mail: thanyada.r@Chula.ac.th, t.rungrotmongkol@gmail.com.

Table 2. RMSD and Cavity Area of the βCD Molecule on Each Hydroxyl Rim

<table>
<thead>
<tr>
<th>systems</th>
<th>rCD</th>
<th>RMSD (nm)</th>
<th>cavity area (nm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>O1 1st 2nd</td>
<td>O1 1st 2nd</td>
</tr>
<tr>
<td>in water</td>
<td>1.59 ± 0.10</td>
<td>0.12 ± 0.02 0.33 ± 0.04 0.25 ± 0.02</td>
<td>0.93 ± 0.04 1.19 ± 0.12 1.56 ± 0.11</td>
</tr>
<tr>
<td>at interface</td>
<td>1.00 ± 0.10</td>
<td>0.10 ± 0.01 0.29 ± 0.01 0.23 ± 0.01</td>
<td>0.86 ± 0.03 1.36 ± 0.06 1.69 ± 0.03</td>
</tr>
<tr>
<td>in lipid tail</td>
<td>1.00 ± 0.10</td>
<td>0.06 ± 0.01 0.17 ± 0.02 0.08 ± 0.02</td>
<td>0.80 ± 0.02 1.35 ± 0.07 1.35 ± 0.04</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

This work was financially supported by the 90th anniversary of the Chulalongkorn University fund, the Ratchadaphiseksomphot Endowment Fund, and Asia Research Center (ARC) at Chulalongkorn University and Kasetsart University Research and Development Institute (KURDI) at Kasetsart University. J.W. gratefully acknowledges financial support from the Faculty of Science and Kasetsart University for the grant no. RFG1-8. T.R. thanks the Thailand Research Fund (IRG5780008 and MRG5580223). We also acknowledge the Computational Chemistry Unit Cell (CCUC) at Chulalongkorn University, the Computational Biophysics Group at Kasetsart University, and the Vienna Scientific Cluster (VSC-2) Austria for computing facilities and resources.

REFERENCES

(33) Zhang, H.; Tan, T.; Feng, W.; van der Speel, D. Molecular Recognition in Different Environments: β-Cyclodextrin Dimer...

