บทที่ 10 การวิเคราะห์การถดถอยอย่างง่าย

1. แนวคิดเกี่ยวกับการวิเคราะห์การถดถอย

การวิเคราะห์การถดถอยเป็นเครื่องมือที่ใช้สำหรับศึกษาความสัมพันธ์ของตัวแปรอิสระ ตัวเดียวหรือหลายตัวคือ X₁, X₂, ..., X_k กับตัวแปรตามชนิดต่อเนื่องที่มี 1 ตัวแปร คือ Y ใช้ มากทั้งในสถานการณ์ที่ไม่สามารถควบคุมตัวแปรอิสระ และในการทดลองที่สามารถควบคุมตัว แปรอิสระได้ ตัวอย่างเช่น ความสัมพันธ์ระหว่างความดันเลือดกับอายุ ความสูงกับน้ำหนัก ความ เข้มข้นของยากับอัตราการเต้นของหัวใจ ความสัมพันธ์ของตัวแปรสามารถหาได้จากการวิเคราะห์ การถดถอยและการวิเคราะห์ความสัมพันธ์

การวิเคราะห์การถดถอยใช้สำหรับการหารูปแบบของความสัมพันธ์ระหว่างตัวแปรตาม กับตัวแปรอิสระ เพื่อใช้ในการทำนายหรือประมาณก่าตัวแปรตามที่สนใจศึกษา เมื่อกำหนดตัว แปรอิสระตัวอื่น ๆ มาให้ ส่วนการวิเคราะห์ความสัมพันธ์ใช้สำหรับวัดความสัมพันธ์ระหว่างตัว แปร 2 ตัวดังอธิบายไว้แล้วในบทที่ 9

2. การวิเคราะห์การถดถอยเชิงเส้นตรง (Straight-Line Regression Analysis)

รูปแบบที่ง่ายที่สุดของปัญหาการถดถอยทั่ว ๆ ไป มีตัวแปรตาม Y และตัวแปรอิสระ X เพียงตัวเดียว จากกลุ่มตัวอย่างขนาด n เราสังเกตค่า X และ Y ของแต่ละตัวอย่าง ดังนั้นเราจะมี ก่าสังเกตทั้งหมด n กู่ ที่สามารถแทนได้ด้วย $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ ซึ่งเราสามารถนำไป พล็อตกราฟได้ และคำนวณหาสมการถดถอยของกลุ่มตัวอย่าง y = a + bx เพื่อเป็นพื้นฐานในการ สรุปอ้างถึงสมการถดถอยของประชากร

$$y = \alpha + \beta x + e$$

เมื่อ

y คือ ค่าหนึ่งที่ได้งากประชากรย่อยกลุ่มหนึ่งของ Y

 α , β คือ สัมประสิทธิ์การถคถอยของประชากร

α คือ ระยะห่างจากจุดกำเนิด (origin) บนแกน Y ตรงจุดที่เส้นถดถอยตัดแกน Y

- β คือ ความชั้นของเส้นถุดถอย หรืออัตราการเปลี่ยนแปลงของ y ต่อการเปลี่ยนแปลง
 - ของ x 1 หน่วย
- e คือ ความคลาดเคลื่อน
- โดยที่
- $e = y (\alpha + \beta x)$
 - $= \quad y \textbf{ } \mu_{_{y/x}}$

e คือ ปริมาณที่ y เบี่ยงเบนไปจากค่าเฉลี่ยของประชากรย่อยของ Y ซึ่งได้จากการสุ่ม

ข้อตกลงเบื้องต้นคือ ประชากรย่อยของ Y แต่ละกลุ่มจะมีการแจกแจงแบบปกติ โดยที่มี กวามแปรปรวนเท่ากันทุกกลุ่ม จึงทำให้กวามกลาดเกลื่อนทั้งหลายของแต่ละประชากรย่อยมีการ แจกแจงแบบปกติด้วย และมีกวามแปรปรวนกงที่เท่ากับ σ² สำหรับแต่ละก่าของ X และ กวามกลาดเกลื่อนทุกตัวเป็นอิสระกัน

3. ขั้นตอนการวิเคราะห์การถดถอย

ขั้นตอนการวิเคราะห์การถคถอยคือ

(1) เริ่มจากการตรวจสอบว่าตัวแบบเส้นตรงเป็นตัวแบบที่เหมาะสมและเป็นไปตาม ข้อตกลงเบื้องต้นเกี่ยวกับความเป็นปกติ โดยใช้กำสั่ง Explore เพื่อดูว่าข้อมูลมีการแจกแจงแบบ ปกติหรือไม่และใช้กำสั่ง Scatter พล็อตกราฟตัวแปรอิสระ X แต่ละตัวกับตัวแปรตาม Y เพื่อดูว่ามี รูปแบบความสัมพันธ์เป็นเชิงเส้นหรือไม่

(2) คำนวณหาสมการถดถอยเชิงเส้นตรงที่เหมาะสมที่สุดกับข้อมูล โดยอาศัยวิธีกำลังสอง น้อยที่สุด

(3) การทดสอบความเหมาะสมของเส้นถดถอยเชิงเส้นตรงที่ได้จากข้อ 2 (Model fit) โดยตรวจสอบว่าตัวแบบที่ได้สามารถอธิบาย Y ได้ดีอย่างไร โดยพิจารณาจากค่าสัมประสิทธิ์ สหสัมพันธ์พหุ (R) และค่าสัมประสิทธิ์การตัดสินใจ (R Square) เพื่อดูว่าตัวแปรอิสระทั้งหมดใน สมการนั้นมีความสัมพันธ์กับตัวแปรตามมากน้อยเพียงใดและสามารถอธิบายความผันแปรของตัว แปรตาม Y ได้ร้อยละเท่าไร

(4) ตรวจสอบว่าเส้นตรงที่หามาได้เป็นไปตามข้อตกลงเบื้องต้นของการวิเคราะห์การ ถดถอยที่ว่าตัวแปรอิสระ X_i ทุกตัวเป็นอิสระกันโดยใช้คำสั่ง Covariance Matrix ซึ่งให้ผลลัพธ์ แสดงค่า Correlation และค่า Covariance ระหว่างตัวแปรอิสระ X_i และคำสั่ง Collinearity Diagnostics เพื่อทคสอบเกี่ยวกับความเป็นอิสระของตัวแปรอิสระ X_i แต่ละตัว แต่ในการ วิเคราะห์การถคถอยอย่างง่ายที่มีตัวแปรอิสระ X เพียงตัวเดียวก็ไม่ต้องตรวจสอบข้อตกลงเบื้องต้น ข้อนี้

(5) ตรวจสอบข้อตกลงเบื้องต้นของตัวแบบการถคถอยเชิงเส้นตรงว่าถูกต้องหรือไม่ โดย การวิเคราะห์ความคลาดเคลื่อน (residual analysis) และอีกวิธีการหนึ่งที่สามารถทำได้คือการ ทดสอบที่เรียกว่า lack of fit

(6) ถ้าพบว่าไม่เป็นไปตามข้อตกลงเบื้องต้นของการวิเคราะห์การถดถอยเชิงเส้นตรงต้อง หาตัวแบบใหม่ที่เหมาะสมกับข้อมูลอีกครั้ง เช่น เอ็กซโพเนนเชียล แล้วทำซ้ำในขั้นที่ 3 คือหาว่าตัว แบบสามารถอธิบาย Y ได้คือย่างไร และทำซ้ำในขั้นที่ 4 เพื่อตัดสินใจว่าต้องหาตัวแบบใหม่ที่ เหมาะสมกับข้อมูลอีกครั้งหรือไม่

4. การทดสอบความเหมาะสมของเส้นถดถอยเชิงเส้นตรง

4.1 การทดสอบสมมติฐานในการวิเคราะห์การถดถอยอย่างง่าย

เพื่อทคสอบสมการถคถอยว่าสามารถอธิบายความสัมพันธ์ระหว่างตัวแปร 2 ตัวได้ดี เพียงใด และสามารถใช้สมการถคถอยในการทำนาย และประมาณก่า Y ได้อย่างมีประสิทธิภาพ หรือไม่

สมมติฐานทางสถิติที่ด้องการทดสอบคือ H_0 : $\beta = 0$ คู่กับ H_1 : $\beta \neq 0$

ถ้าในประชากรความสัมพันธ์ระหว่างตัวแปร X และ Y เป็นแบบเส้นตรง β คือความ ชันของเส้นตรงที่อธิบายความสัมพันธ์นั้น ซึ่งอาจมีค่าเป็นบวก ลบ หรือศูนย์ ถ้า β มีค่าศูนย์ หมายความว่า กลุ่มตัวอย่างที่สุ่มมาจากประชากรให้สมการถดถอยที่ไม่สามารถทำนายและ ประมาณค่า Y ได้ นอกจากนี้ความสัมพันธ์ระหว่าง X และ Y อาจไม่ใช่แบบเส้นตรง

สำหรับกรณีที่สรุปว่าปฏิเสธ H₀ : β = 0 เราสรุปว่า 1) ความสัมพันธ์ระหว่าง X และ Y เป็นแบบเส้นตรง และสามารถใช้สมการถคถอยของกลุ่มตัวอย่างในการทำนายค่า Y โดย กำหนดค่า X ให้ได้ 2) ตัวแบบเชิงเส้นตรงเหมาะสมกับข้อมูล แต่อาจมีตัวแบบอื่นที่ไม่ใช่ เส้นตรงเหมาะสมกับข้อมูลมากกว่าก็ได้

4.2 สัมประสิทธิ์การกำหนด (The Coefficient of determination)

ก่อนจะใช้สมการถดถอยในการทำนายและประมาณก่าตัวแปร Y ต้องมีการประเมิน สมการถดถอยที่ได้จากตัวอย่างก่อน โดยประเมินว่าสมการถดถอยที่ได้นั้นสามารถอธิบาย กวามสัมพันธ์ระหว่างตัวแปร 2 ตัวแปรได้ดีเพียงใด นั่นคือ ผลบวกกำลังสองของเส้นถดถอย ส่วน ผลบวกกำลังสองของทั้งหมดกวรจะเป็นสัดส่วนที่ใหญ่ขึ้นเพียงนั้น ก่าของสัดส่วนที่ได้นี้เรียกว่า สัมประสิทธิ์การกำหนด แทนด้วย r² เขียนเป็นสูตรได้คือ

$$r^{2} = \frac{\sum (y - \overline{y})^{2}}{\sum (y_{i} - \overline{y})^{2}}$$
$$= \frac{b^{2} \left[\sum x_{i}^{2} - (\sum x_{i})^{2} / n \right]}{\sum y_{i}^{2} - \frac{(\sum y_{i})^{2}}{n}}$$
$$= \frac{SSR}{SST}$$

ค่า \mathbf{r}^2 ที่มากที่สุดคือ 1 จะเกิดขึ้นเมื่อความแปรปรวนทั้งหมดใน \mathbf{y}_i อธิบายได้ด้วยการ ถดถอย เมื่อ \mathbf{r}^2 = 1 ค่าสังเกตทุกตัวของตัวอย่างจะอยู่บนเส้นถดถอย ดังแสดงในภาพที่ 10.1

ภาพที่ 10.1

ค่า r² ที่น้อยที่สุดคือ 0 จะเกิดขึ้นเมื่อเส้นถดถอยและเส้นที่ลากผ่าน ⊽ ทับกัน แสดงว่า ความแปรปรวนทั้งหมดใน y_i ไม่สามารถอธิบายได้ด้วยการถดถอย ดังแสดงในภาพที่ 10.2

ภาพที่ 10.2

ค่า r² เป็นการวัดความใกล้ของเส้นถดถอยของตัวอย่างกับค่าสังเกตค่าต่าง ๆ ของตัวอย่าง ถ้าค่า r² มีค่ามากแสดงว่าเส้นถดถอยจะผ่านใกล้ค่าสังเกตค่าต่าง ๆ มากกว่าค่า r² ที่มีค่าน้อยกว่า ดังแสดงในภาพที่ 10.3 (ก) และ (ข)

สำหรับการประเมินสมการถดถอยพหุ เราจะวัดค่าสัมประสิทธิ์การกำหนดพหุ (The coefficient of multiple determination) และสัมประสิทธิ์การถดถอยบางส่วน (partial regression coefficient)

สัมประสิทธิ์สหสัมพันธ์ (Coefficient of correlation) ของตัวอย่างคือ รากที่สองของ r² แทนด้วยสัญลักษณ์ r

$$r = \pm \sqrt{r^2}$$

เครื่องหมายบวกหรือลบจะเป็นไปตามก่ากวามชั่นของเส้นถุดถอยที่อาจเป็นบวกหรือลบ ดังนั้นก่า r จะอยู่ระหว่าง -1 ถึง +1

5. การใช้คำสั่ง Regression ตัวแบบเชิงเส้น (Linear Model)

ตัวอย่างเช่น ผู้วิจัยต้องการสมการที่ใช้ทำนายตัวแปรตาม Y (Deep Abdominal AT) ด้วย ตัวแปรอิสระ X (Waist Circumference) หน่วยทดลองคือผู้ชายอายุระหว่าง 18 ถึง 42 ปี ที่ไม่มีเชื้อ เมทาโบลิกเป็น ทรีทเมนต์ ทำการวัด deep abdominal AT และ waist circumference ของผู้ชาย 109 คน ได้ข้อมูลดังตาราง ผู้วิจัยต้องการทราบว่าตัวแปร waist circumference สามารถทำนายและ ประมาณค่าตัวแปรตาม deep abdominal AT ได้คีเพียงใด ซึ่งหาคำตอบได้โดยการวิเคราะห์การ ถดถอย ข้อมูลอยู่ในแฟ้มข้อมูล Regress1.sav. กำหนดให้ตัวแปร id คือ รหัสของตัวอย่าง ตัวแปร x แทน waist circumference ตัวแปร y แทน deep abdominal AT มีรูปแบบข้อมูลดังนี้

		•	•								
id	х	У	id	х	у	id	х	у	id	х	у
1	74.75	25.72	31	83.5	72.56	61	77.6	57.05	91	97.5	165
2	72.6	25.89	32	88.1	89.31	62	84.9	99.73	92	105.5	152
3	81.8	42.6	33	90.8	78.94	63	79.8	27.96	93	98	181
4	83.95	42.8	34	89.4	83.55	64	108.3	123	94	94.5	80.95
5	74.65	29.84	35	102	127	65	119.6	90.41	95	97	137
6	71.85	21.68	36	94.5	121	66	119.9	106	96	105	125
7	80.9	29.08	37	91	107	67	96.5	144	97	106	241
8	83.4	32.98	38	103	129	68	105.5	121	98	99	134
9	63.5	11.44	39	80	74.02	69	105	97.13	99	91	150
10	73.2	32.22	40	79	55.48	70	107	166	100	102.5	198
11	71.9	28.32	41	83.5	73.13	71	107	87.99	101	106	151
12	75	43.86	42	76	50.5	72	101	154	102	109.1	229
13	73.1	38.21	43	80.5	50.88	73	97	100	103	115	253
14	79	42.48	44	86.5	140	74	100	123	104	101	188
15	77	30.96	45	83	96.54	75	108	217	105	100.1	124
16	68.85	55.78	46	107.1	118	76	100	140	106	93.3	62.2
17	75.95	43.78	47	94.3	107	77	103	109	107	101.8	133
18	74.15	33.41	48	94.5	123	78	104	127	108	107.9	208
19	73.8	43.35	49	79.7	65.92	79	106	112	109	108.5	208
20	75.9	29.31	50	79.3	81.29	80	109	192			
21	76.85	36.6	51	89.8	111	81	103.5	132			
22	80.9	40.25	52	83.8	90.73	82	110	126			
23	79.9	35.43	53	85.2	133	83	110	153			
24	89.2	60.09	54	75.5	41.9	84	112	158			
25	82	45.84	55	78.4	41.71	85	108.5	183			
26	92	70.4	56	78.6	58.16	86	104	184			
27	86.6	83.45	57	87.8	88.85	87	111	121			
28	80.5	84.3	58	86.3	155	88	108.5	159			
29	86	78.89	59	85.5	70.77	89	121	245			
30	82.5	64.75	60	83.7	75.08	90	109	137			

ตารางที่ 10.1 รูปแบบข้อมูลสำหรับการวิเคราะห์การถดถอย

แหล่งที่มา : Jean-Pierre Despres, Ph.D. (อ้างถึงใน Daniel, W.W., 1995)

5.1 การทดสอบว่าตัวแปรอิสระ x มีความสัมพันธ์เชิงเส้นกับตัวแปรตาม y หรือไม่

้ โดยการพลีอต กราฟการกระจายของข้อมูล มีวิธีการดังนี้

1. ไปที่เมนูบาร์ คลิกที่ Graphs, Scatter... จะได้หน้าต่าง Scatterplot

 ในหน้าต่าง Scatterplot คลิกเลือกที่ Simple แล้วคลิกที่ปุ่ม Define จะได้หน้าต่าง Simple Scatterplot

ในหน้าต่าง Simple Scatterplot คลิกเลือกตัวแปร y ให้ย้ายเข้าไปอยู่ในช่อง Y Axis :
แล้วคลิกเลือกตัวแปร x ให้ย้ายเข้าไปอยู่ในช่อง X Axis :

แล้วคลิกปุ่ม OK จะได้ผลลัพธ์ดังภาพที่ 10.4

ภาพที่ 10.4

จากภาพการกระจายของข้อมูลจะเห็นว่าตัวแปรอิสระ x มีความสัมพันธ์เชิงเส้นกับตัว แปรตาม y คือ เมื่อ x เพิ่มขึ้นทำให้ y เพิ่มขึ้นด้วย ดังนั้นตัวแบบเชิงเส้น (linear model) เหมาะสมกับข้อมูลชุดนี้

5.2 คำนวณหาสมการถดถอยเชิงเส้นตรง และทดสอบความเหมาะสมของเส้นถดถอยที่ได้

โดยทดสอบว่าตัวแปร x มีความสัมพันธ์กับตัวแปร y หรือไม่ โดยใช้คำสั่ง Model fit ทดสอบสมมติฐาน $H_0: \beta = 0$ มีขั้นตอนการใช้คำสั่งดังนี้

 ไปที่เมนูบาร์ คลิกที่ Analyze , Regression , Linear จะได้หน้าต่าง Linear Regression

ในหน้าต่าง Linear Regression ในช่องซ้ายมือ คลิกเลือกตัวแปร y ให้ย้ายเข้าไปอยู่
ในช่อง Dependent : แล้วคลิกเลือกตัวแปร x ให้ย้ายเข้าไปอยู่ในช่อง Independent(s) :

- ที่คำสั่ง Method : เป็นวิธีการเลือกตัวแปรอิสระเข้าสมการถดถอย ให้เลือก วิธีการ Enter ซึ่งโดยปกติโปรแกรมจะกำหนดให้อยู่แล้ว

- คลิกที่ตัวแปร x ให้ย้ายเข้าไปอยู่ในช่อง Case Labels : เพื่อต้องการให้ผลลัพธ์ แสดง Label ของตัวแปร x ลงในกราฟที่สั่งพล็อต

- คลิกที่ปุ่ม Statistics...จะได้หน้าต่าง Linear Regression : Statistics ดังภาพที่ 10.6

- คลิกที่ปุ่ม Plots... จะได้หน้าต่าง linear Regression : Plots ดังภาพที่ 10.10 ซึ่ง จะอธิบายต่อไปในตอนที่ 5.3

ภาพที่ 10.5

- 3. ในหน้าต่าง Linear Regression : Statistics
 - ในกรอบ Regression Coefficient

คลิกเลือกที่ Estimates เพื่อให้ผลลัพธ์ทำการประมาณค่าสัมประสิทธิ์ถคลอย คือ α และ β และค่าสถิติ t ที่ใช้ในการทคสอบสมมติฐานเกี่ยวกับตัวแปรอิสระ x แต่ละตัวในตัว แบบการถคลอยว่ามีความสัมพันธ์กับตัวแปรตาม y หรือไม่ แต่ในตัวอย่างนี้มีตัวแปรอิสระ x เพียงตัวเคียว ดังนั้นสมมติฐานคือ H₀ : β = 0 โดยปกติโปรแกรมจะเลือกให้อยู่แล้ว

คลิกเลือกที่ 🗖 Confidence intervals เพื่อให้ผลลัพธ์คำนวณหาช่วงความเชื่อมั่น ของค่าประมาณของสัมประสิทธิ์การถคลอย

- คลิกเลือกที่ \Box Model fit เพื่อทำการทดสอบความเหมาะสมของตัวแบบเชิงเส้น ที่ได้คือ y = a + bx เหมาะสมกับข้อมูลของตัวอย่าง ด้วยการวิเคราะห์ความแปรปรวน (ANOVA) สถิติทดสอบคือ สถิติ F สมมติฐานที่ต้องการทดสอบคือ H₀ : β₁ = β₂ = ... = β_k = 0 คู่กับ H₁ : β_i อย่างน้อย 1 ตัวที่ไม่เท่ากับ 0 แต่ในตัวอย่างนี้มีตัวแปรอิสระ x เพียงตัวเคียวดังนั้น สมมติฐานที่ต้องการทดสอบคือ H₀ : β = 0

ความเหมาะสมของตัวแบบการถคถอยที่ประมาณได้คือ การพิจารณาว่าสมการ ถคถอยที่หามาได้สามารถอธิบายความสัมพันธ์ระหว่าง 2 ตัวแปรได้ดีเพียงใด พิจารณาจากสัดส่วน ของ SSR/SST ของกลุ่มตัวอย่าง ผลลัพธ์ที่ได้เรียกว่า coefficient of determination หรือ R² ซึ่ง แสดงอยู่ในผลลัพธ์นี้ด้วย

นอกจากนี้ในผลลัพธ์ยังแสดงค่าความคลาดเคลื่อนมาตรฐานจากการประมาณค่า (standard error of the estimate) หรือรากที่สองของ MSE

แล้วคลิกปุ่ม Continue หน้าต่างนี้จะถูกปิดไป

ในหน้าต่าง Linear Regression
คลิกที่ปุ่ม OK จะได้ผลลัพธ์ดังภาพที่ 10.7

Regression

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	Waist Circumference ^a		Enter

a. All requested variables entered.

b. Dependent Variable: Deep Abdominal

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.819 ^a	.670	.667	33.06493

a. Predictors: (Constant), Waist Circumference

b. Dependent Variable: Deep Abdominal

ANO	VAb
-----	-----

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	237548.516	1	237548.516	217.279	.000 ^a
	Residual	116981.986	107	1093.290		
	Total	354530.502	108			

a. Predictors: (Constant), Waist Circumference

b. Dependent Variable: Deep Abdominal

Coefficients ^a									
		Unstandardized Coefficients		Standardized Coefficients			95% Cor Interva	nfidence I for B	
Marial		5	Std.	Data		0:	Lower	Upper	
wodei		В	Error	Beta	t	Sig.	Bound	Bound	
1	(Constant)	-215.981	21.796		-9.909	.000	-259.190	-172.773	
	Waist Circumference	3.459	.235	.819	14.74	.000	2.994	3.924	

a. Dependent Variable: Deep Abdominal

Casewise Diagnostics a

	Waist		Deep
Case Number	Circumference	Std. Residual	Abdominal
65	119.60	-3.245	90.41

a. Dependent Variable: Deep Abdominal

Residuals \$	Statistics ^a
--------------	-------------------------

	Minimum	Maximum	Mean	Std. Deviation	Ν
Predicted Value	3.6561	202.5405	101.8940	46.89908	109
Residual	-107.28809	90.34239	.00000	32.91150	109
Std. Predicted Value	-2.095	2.146	.000	1.000	109
Std. Residual	-3.245	2.732	.000	.995	109

a. Dependent Variable: Deep Abdominal

ภาพที่ 10.7

จากภาพผลลัพธ์การคำนวณหาสมการถดถอยเชิงเส้นตรง ดูจากในตาราง Coefficients ในช่อง Unstandardized Coefficients ดูที่ค่า B และ Std.Error ของ Constant และ ตัวแปร Waist circumference (x) คือค่าประมาณของสัมประสิทธิ์การถดถอย ได้ค่าประมาณ a = -215.981 และ b = 3.459 มีค่าความคลาดเคลื่อนมาตรฐานเท่ากับ 21.796 และ .235 ตามลำดับ

95% ช่วงความเชื่อมั่นของค่าประมาณ α คือ (-259.190, -172.773)

95% ช่วงความเชื่อมั่นของค่าประมาณ β คือ (2.994, 3.924)

สรุปได้สมการถดถอยของตัวอย่างคือ

$$\hat{y} = -215.981 + 3.459x$$

a เป็นค่าลบ หมายความว่า เส้นตรงตัดแกน Y ที่ต่ำกว่าจุดกำเนิด (origin)

b เป็นค่าบวก หมายความว่า เส้นตรงลากจากมุมซ้ายค้านล่างของกราฟไปมุมขวาของค้านบน และ เมื่อ x เพิ่มขึ้น 1 หน่วย ทำให้ y เพิ่มขึ้น 3.459 หน่วย

^ y คือ ค่าของ y ที่คำนวณได้จากสมการถดถอย

สำหรับการทดสอบความเหมาะสมของเส้นถดถอยของตัวอย่างนี้ ดูจากตาราง ANOVA ดู ที่ค่าสถิติ F เท่ากับ 217.279 และ Sig. เท่ากับ .000 สรุปว่าปฏิเสธ H₀ : $\beta = 0$ นั่นคือตัวแปร อิสระ x สามารถอธิบายความผันแปรของตัวแปรตาม y ได้อย่างมีนัยสำคัญทางสถิติ (Sig < .05) จากตาราง Model Summary ดูที่ค่า R Square เท่ากับ .670 หมายความว่า x สามารถอธิบาย ความผันแปรของ y ได้ร้อยละ 67.0 นอกจากนี้ความคลาดเคลื่อนมาตรฐานของการประมาณก่าดู ที่ค่า Std. Error of the Estimate เท่ากับ 33.06493

ในตาราง Residuals Statistics แสดงค่าน้อยที่สุด (Minimum) ค่ามากที่สุด (Maximum) ค่าเฉลี่ย (Mean) ค่าเบี่ยงเบนมาตรฐาน (Std. Deviation) และจำนวนข้อมูล (N) ของค่าทำนายตัว แปร y (Predicted Value) ซึ่งคำนวณได้จากตัวแบบการถดถอย ค่าความแตกต่างระหว่างค่า ทำนายตัวแปร y กับค่าสังเกตที่ได้จากกลุ่มตัวอย่างเรียกว่า เสษตกค้าง (Residual) ตลอดจนค่า เบี่ยงเบนมาตรฐานของค่าทำนายตัวแปร y (Std. Predicted Value) และค่าเบี่ยงเบนมาตรฐานของ ค่าเสษตกค้าง (Std. Residual)

นอกจากนี้ในตาราง Casewise Diagnostics ได้แสดงข้อมูลตัวที่เป็น outliers ที่มีค่าความ กลาดเคลื่อนมาตรฐาน (Std. Residual) เท่ากับ -3.245 คือข้อมูลตัวที่ 65 ที่มีค่าของตัวแปร x คือ 119.6 และมีค่าของตัวแปร y คือ 90.41 ซึ่งข้อมูลตัวนี้มีผลทำให้สมการถดถอยเบี่ยงเบนไป และทำให้การทำนายค่า y มีความผิดพลาดได้ ดังนั้นถ้าตัดข้อมูลตัวนี้ออกไปแล้วทำการวิเคราะห์ การถดถอยใหม่อีกครั้งจะได้ผลลัพธ์ใหม่ที่แตกต่างไปจากเดิมดังภาพที่ 10.8

Regression

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	Waist Circumference ^a		Enter

a. All requested variables entered.

b. Dependent Variable: Deep Abdominal

Model Summaryb

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.839 ^a	.704	.701	31.45726

a. Predictors: (Constant), Waist Circumference

b. Dependent Variable: Deep Abdominal

ANOVA^b

		Sum of		Mean		
Model		Squares	df	Square	F	Sig.
1	Regression	249504.138	1	249504.138	252.137	.000 ^a
	Residual	104893.260	106	989.559		
	Total	354397.398	107			

a. Predictors: (Constant), Waist Circumference

b. Dependent Variable: Deep Abdominal

Coefficients a

		Unstandardized Coefficients		Standardize d Coefficients			95% Confidence Interval for B	
Model		в	Std. Error	Beta	t	Siq.	Lower Bound	Upper Bound
1	(Constant)	-229.393	21.089		-10.878	.000	-271.203	-187.583
	Waist Circumference	3.616	.228	.839	15.879	.000	3.165	4.068

a. Dependent Variable: Deep Abdominal

Casewise Diagnostics a

	Waist		Deep
Case Number	Circumference	Std. Residual	Abdominal
65	119.90	-3.121	106.00

a. Dependent Variable: Deep Abdominal

Residuals Statistics^a

				Std.	
	Minimum	Maximum	Mean	Deviation	N
Predicted Value	.2256	208.1478	102.0004	48.28886	108
Residual	-98.17019	87.09274	.00000	31.30992	108
Std. Predicted Value	-2.108	2.198	.000	1.000	108
Std. Residual	-3.121	2.769	.000	.995	108

a. Dependent Variable: Deep Abdominal

ภาพที่ 10.8

ผลการวิเคราะห์การถคถอยที่ตัด outlier คือ ข้อมูลตัวที่ 65 ออกไป ทำให้ได้สมการ ถดถอยของตัวอย่างคือ

$$\bigwedge_{y} = -229.39 + 3.616x$$

และผลการทดสอบความเหมาะสมของเส้นถดถอยของตัวอย่างนี้ ดูที่ก่า R Square เท่ากับ .704 หมายความว่า x สามารถอธิบายความผันแปรของ y ได้ร้อยละ 70.4 ซึ่งสูงขึ้น และก่า ความคลาดเคลื่อนมาตรฐานของการประมาณก่าเท่ากับ 31.45726 ซึ่งลดลง

และยังมี outlier คือข้อมูลตัวที่ 65 ที่มีค่าของตัวแปร x คือ 119.9 และมีค่าของตัวแปร y คือ 106.0 โดยมีค่าความคลาดเคลื่อนมาตรฐาน เท่ากับ -3.121 ถ้าตัดข้อมูลตัวนี้ออกไปแล้วทำ การวิเคราะห์การถดถอยใหม่อีกครั้งจะได้ผลลัพธ์ที่แตกต่างไปอีกดังภาพที่ 10.9

Regression

Variables Entered/Removed^b

Model	Variables Entered	Variables Removed	Method
1	Waist Circumference ^a		Enter

a. All requested variables entered.

b. Dependent Variable: Deep Abdominal

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.856 ^a	.733	.730	30.03758

a. Predictors: (Constant), Waist Circumference

b. Dependent Variable: Deep Abdominal

ANOVA^b

		Sum of		Mean		
Model		Squares	df	Square	F	Sig.
1	Regression	259644.335	1	259644.335	287.772	.000 ^a
	Residual	94736.917	105	902.256		
	Total	354381.251	106			

a. Predictors: (Constant), Waist Circumference

b. Dependent Variable: Deep Abdominal

Coefficients^a

	Unstandardized Coefficients		Standar dized Coeffici ents			95% Co Interva	nfidence al for B	
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	-242.474	20.511		-11.822	.000	-283.143	-201.805
	Waist Circumference	3.769	.222	.856	16.964	.000	3.329	4.210

a. Dependent Variable: Deep Abdominal

Residuals Statistics^a

				Std.	
	Minimum	Maximum	Mean	Deviation	Ν
Predicted Value	-3.1281	213.6026	101.963	49.49217	107
Residual	-72.84343	83.93580	.00000	29.89556	107
Std. Predicted Value	-2.123	2.256	.000	1.000	107
Std. Residual	-2.425	2.794	.000	.995	107

a. Dependent Variable: Deep Abdominal

ภาพที่ 10.9

ผลการวิเคราะห์การถคถอยที่ตัด outlier คือข้อมูลตัวที่ 65 ออกไปทำให้ได้สมการ ถดถอยของตัวอย่างคือ

$$\bigwedge_{y}$$
 = -242.474 + 3.769x

และผลการทดสอบความเหมาะสมของเส้นถุดถอยของตัวอย่างนี้ ดูที่ก่า R Square เท่ากับ .733 ซึ่งสูงขึ้น และก่าความกลาดเกลื่อนมาตรฐานของการประมาณก่าเท่ากับ 30.03758 ซึ่งลดลง หมายความว่า เมื่อตัดข้อมูลตัวที่เป็น outlier แล้วทำให้สมการถดถอยมีความเหมาะสม กับข้อมูลมากขึ้น

5.3 ตรวจสอบข้อตกลงเบื้องต้นของตัวแบบการถดถอยเชิงเส้นตรง

เพื่อตรวจสอบว่าสมการเส้นตรงที่หามาได้เป็นไปตามข้อตกลงเบื้องต้นหรือไม่ ข้อตกลง เบื้องต้นเกี่ยวกับความเป็นปกติ และความคงที่ของความแปรปรวนของความคลาดเคลื่อนโดยใช้ วิธีการพลีอตกราฟของความคลาดเคลื่อน มีวิธีการตรวจสอบดังนี้คือ ทำต่อจากขั้นตอนที่ 2 ใน หัวข้อ 5.2

 ในหน้าต่าง Linear Regression คลิกที่ปุ่ม Plots... จะได้หน้าต่าง Linear Regression : Plots ดังภาพที่ 10.10

ภาพที่ 10.10

2. ในหน้าต่าง Linear Regression : Plots

คลิกที่ตัวแปร ZRESID (Standardized Residuals) ให้ย้ายไปอยู่ในช่อง Y : แล้วคลิก ที่ตัวแปร ZPRED (Standardized Predicted Values) ให้ย้ายไปอยู่ในช่อง X : ในกรอบ Standardized Residual Plots คลิกที่ 🗆 Histogram และ 🗆 Normal probability plot เพื่อตรวจสอบว่าค่าความคลาดเคลื่อนมีการแจกแจงแบบปกติหรือไม่ แล้วคลิกปุ่ม Continue หน้าต่างนี้จะถูกปิดไป

3. ในหน้าต่าง Linear Regression

คลิกปุ่ม OK จะได้ผลลัพธ์ดังภาพที่ 10.11

Dependent Variable: Deep Abdominal

Scatterplot

จากภาพผลการพล็อตกราฟ Histogram และ Normal P-P Plot ของความคลาดเคลื่อน มาตรฐาน มีแนวโน้มเป็นเส้นตรง แสดงว่าเข้าใกล้การแจกแจงปกติ และกราฟการกระจาย Scatterplot ระหว่างค่า Regression Standardized Residual กับค่า Regression Standardized Predicted Value มีการกระจายของความคลาดเคลื่อนแบบไม่มีรูปแบบแสดงว่าความแปรปรวน ของความกลาดเกลื่อนคงที่