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g-mail: mukherji@egr.msu.edu In comparison to wheeled robots, spherical mobile robots offer greater mobility, stability,
and scope for operation in hazardous environments. Inspite of these advantages, spherical
Mark A. Minor designs have failed to gain popularity due to complexity of their motion planning and
Department of Mechanical Engineering, control problems. In this paper, we address the motion planning problem for the rolling
University of Utah, sphere, often referred in the literature as the “ball-plate problem,” and propose two
Salt Lake City, UT 84112 different algorithms for reconfiguration. The first algorithm, based on simple geometry,
uses a standard kinematic model and invokes alternating inputs to obtain a solution
Jav T. Pukrushpan comprised of circular arcs and straight line segments. The second algorithm is based on
Department of Mechanical Enginesring, the Gauss-Bonet theorem of parallel transport and achieves reconfiguration through
University of Michigan, spherical triangle maneuvers. While the second algorithm is inherently simple and pro-
Ann Arbor. MI 48109 vides a solution comprised of straight line segments only, the first algorithm provides the

basis for development of a stabilizing controller. Our stabilizing controller, which will be
presented in our next paper, will be the first solution to a problem that has eluded many
researchers since the kinematic model of the sphere cannot be converted to chained form.
Both our algorithms require numerical computation of a small number of parameters and
provide the scope for easy implementatiofDOl: 10.1115/1.1513177

1 Introduction they do not provide solution trajectories. To obtain a feasible so-

lution, a three-step algorithm was proposed by Li and Cdifhy

ou,;/lﬁi?:!sehir O?A(/Jitti agstgﬁlggllgsdesgrﬁd Vgghtgr&ﬁ%flélllkuesl)é %l;etﬁ'he position coordinates of the sphere are converged to their de-

P . ; T ying e ired values in the first step of the algorithm. In the second step,
wheel as a quasi-static de_\/lce, mobility and stability of the _robo o of the three orientation coordinates are converged using Lie
are enhanced using multiple Wheels, Iargg Whee!s, mu|t|'-wh cket-like motion. Such motion generates an equatorial spheri-
drives, broad wheel bases, traction enhancing devices, artu:ula%1 triangle on the surface of the sphere. The third step uses a
body configurations, etc. The single-wheel robot recently pr?folhode to converge the last orientation coordinate.

pok')setddby _Brow_lphgnd ﬁ%] Lepresentstar\] pacrsadlgm shift Iln {noblle The rolling sphere problem, also referred to as the ball-plate
robot design. This robot, known as the fyrover, Exploits gyresopiem has been revisited in recent years. A control input trans-
scopic forces for steering and stability and has certain advanta ation was proposed by Bicchi et §6] to obtain a kinematic
?ver ttraéj_ltt_lonall de5|gnts.t_S|m|I3rlto t?e (ijyro_ver, r\:Vh'Chb dlffel'§nodel of the sphere with a triangular structure. This structure
rom traditional quasi-static modeis, a few designs nave been pigy, mises to simplify integration of the state equations for alternat-
posed for spherical wheels with internal mechanisms for prop

) ; . 1g inputs and arriving at a system of nonlinear equations. The
sion[2—4]. The robot designed by Halme et E3] incorporates a o ations can be solved taking additional criteria into account,
single-wheeled device constrained inside the spherical wheel, g%

devi ion b h bal 4 eh h h as avoiding workspace limits, or minimizing the length of
evice generates motion by creating unbalance and changes ‘path, but their iterative solution demands excessive computa-

tional time. In the words of the authof§], the solution process

o . ffay fail because of “abnormal extremals encountered along the
The omnidirectional robot by Koshiyama and Yamafid] has @ nath » An optimal solution to the ball-plate problem, which mini-

limited range of lateral roll due to its arch-shaped body. Naturallifyizes the integral of the kinetic energy of the ball along the path,
it fails to completely exploit the maneuverability associated wit{},5¢ proposed by Jurdjevi6]. The results are elegant and indicate

spherical exo-skeletons. _ that optimal trajectories are characterized by elliptic functions. It
We are independently engaged in research and developmenkly he noted that elliptic functions have been used earlier to
a spherical mobile robot, and in this paper, we address the NQ@nstruct the controllability of nonholonomic systeri®, and
holonomlc motloin planning problem. This prOblem_, also IMPOlgesign optimal trajectories for mobile robdis0]. Despite the
tant in its own right, refers to the task of converging a sphergjegance and appeal of the closed-form structure, the optimal tra-
rolling without slipping on a flat surface, from any initial configu-jectories require computation of elliptic functions and integrals at
ration to an arbitrary final configuration. The problem is particlsyvery step and pose challenges in implementation.
larly interesting since the kinematic model of the sphere cannot beyp, thjs paper, we present two computationally efficient motion-
reduced to chained-forrf]; this renders regimented nonholo-pjanning algorithms for the rolling sphere. A kinematic model of
nomic motion _plannlng an_d control algorithms inapplicalfie In ~ the sphere is first presented in Section 2. This model provides the
reality, the rolling sphere is a completely controllable system, atgsis for the first algorithm, which is presented in Section 3. The
trajectories for reconfiguration exist. Although differential<irst aigorithm uses plane trigonometry to obtain polhode solution
geometric tools can ascertain the existence of such trajecf@lies trajectories. Although these polhodes bear resemblance to the tra-
jectories generated by the third step of Li and Canny’s algorithm
Contributed by the Dynamic Systems and Control Division 6ETAMERICAN [7]' they are more general and reconfigure the sphere in fewer

SOCIETY OF MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF ; ; - . )
DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received by the steps. We present our second algorithm in Section 4. This algo

ASME Dynamic Systems and Control Division, July 2000; final revision, Marcithm, based on spherical trigonometry, requires at most two
2002. Associate Editor: Y. Hurmuzlu. spherical triangle maneuvers for complete reconfiguration. It is

ing by turning the wheel axis. The design by Bicchi et[d] is
similar but employs a four-wheeled car to generate the unbalan
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Fig. 1 Initial and final configurations of sphere
similar to the second step of the algorithm by Li and Cafifly In the sequel, we assume the sphere to have unity radius with-

but eliminates the third step by using general spherical trianglesjt any loss of generality. Also, we denote the angular velocities
as opposed to equatorial triangles. The Gauss-Bonet thgdrdm of the sphere about the ,y; ,z, axes asmi ,w§ ,w%, respectively.

provides a basis for our second algorithm but the basis can Rgsumingw!=0, the state equations can be written as
independently established using spherical trigonomettg]. ?

Simulation results for both our algorithms are presented in Section

v_ 1 1
5. Section 6 provides concluding remarks and future research X=wy CoSa+ wy Sina (2a)
directions. _
y=wy Sina— w} Cosa (2b)
2 Problem Statement and Kinematic Model .
0= oy (20)

The configuration of a sphere rolling on a flat surface can be
described by the two Cartesian coordinates of the center of the
sphere, and three coordinates describing the sphere orientation. In a=— wi cotd (2d)

Fig. 1(a) the center of the sphere is defined by pdhtthe ori-

entation is described by poin® and R, whereP is an arbitrary . 1

point on the surface of the sphere, @Rds an arbitrary point on ¢=w; cosedd (2¢)

the equatorial circle, defined relative B The complete recon-

figuration of the sphere refers to the task of converghtp the In the model above, the first three equations can be derived sim-
origin of the Cartesian coordinate fran,to the vertically up- ply. The expression foe can be obtained from the relative veloc-
right position, andR to some desired orientatiog; , relative to ity of P with respect toQ, when the sphere rotates with angular
the x axis. The final desired configuration of the sphere is showelocity w’. The angular velocityp is simply the vector sum of

in Fig. 1(b). the angular velocitiesr and w?. Alternatively, Eqgs.(2c), (2d),
To obtain a kinematic model of the sphere, we denote Cartesigﬁkj(ge), can be derived from the relation between thez Euler
coordinates of the sphere center®y=(x,y). We adopt the-y-z angle ratesr, 8, %, and the angular velocities? , 0! !, subject
Euler angle sequencex(6,¢) to represent the orientation of the, "\~ ey
sphere. We first translate thg z frame to the center of the sphere z =
and rotate it about the positiveaxis by anglex, — m<a=<m, to
obtain framex;y,z; . We rotate framex;y,z; about they; axis by . . .
angled, 0= #< m, to obtain framex,y,z,. The pointP is located 3 Simple Geometric Motion Planner
at the intersection point of they axis with the sphere surface. The
X5Y»2Z, frame is rotated about the, axis by angle¢ to obtain
frame x3y3z3. The pointR is located at the intersection point of
the x5 axis and the sphere surface. The frames, X,y174,

3.1 Effect of Individual Control Actions. Consider the
motion of the sphere described by the kinematic model in(Bqg.
for the individual control actions

XoY2Z,, X3Y3Z3, andz-y-z Euler angles &, 0, ¢) are all shown in (A) w;;eo, wi=0
Fig. 1(a). The reorientation of the sphere refers to the task of 1 L
bringing P to the vertically upright position, an®, which then (B) 05x#0, w;=0, 6#0

Iie_shon the diamek:rical _circ_ll_eh_in they g'a”ethO thcei or_i;'r;tatioﬁfd The motion of the sphere for these actions are explained with the
with respect to the axis. This can be achieved with=0, and o5 o Fig. 2. For actioriA), the sphere moves along straight line

at¢=p, imespective of the individual values of the Eulelc e ag g changes. LeE be the point on this straight line where the

angIeISa, |¢’ as S?OW” (ijanig- (). Therefore, the sphere can begppere would have=0. Since the sphere rolls without slipping,
completely reconfigured by satisfying this point remains invariant under control actioh). For control
x=0, y=0, 6=0, a+d=p; (1) action (B), the instantaneous radius of the path traced by the

. . . sghere on thety plane can be computed using Eg) as follows
The above equation may create the false impression that our ob-

jective is to converge the sphere to a configuration manifold.
However, it can be verified from Fig.(l) that Eq.(1) represents p=
a unique configuration of the sphere.

)'(2+ {2 3/2|
# =tand 3)

Xy—yX
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Fig. 2 Motion of the sphere under control actions (A) and (B)

Sincew§=0, 0 is maintained constant. This implies that the con-

At the end of the first step, shown in Fig. B,moves away from
its vertically upright position untiQ P subtends anglé’ with the
vertical. Thex, axis, initially coincident with thex; axis, now
subtends angl®’ with the x; axis in the vertical plane. During
step 2,6 remains constant &= 6’, the sphere traces out a cir-
cular arc on the ground, and thg axis changes direction to
remain pointed normal to the arc. Thg axis moves along with
the x, axis, maintaining anglé@’ with respect to it in the vertical
plane. During step 2, the; axis spins about the, axis, and at the
end of the maneuver undergoes a net rotatiom\@f about it.
Since thex,; axis undergoes a change of orientation by arge
during the same time, we can use E(&l) and (2e) to write

Ap=—sechd Aa (5)

During step 3, control actiof®) returns the plane containing the
axesx,, Y,, X3, andys, to the plane containing the axesy, X4,
andy;. At the end of the sequence of maneuvers, the sphere is
described by the configuration in Fig. 3, where

X=X, Y=Yi, 0=0, i+ di=p; (6)

tact point of the sphere moves along a circular path; the center of

this circle is located a€ in Fig. 2. Along with the contact point,

pointsP andF also move along circular paths; the center of thesgnd wherex;,y;, denote the final Cartesian coordinates of the

paths lie on the vertical axis that passes throGgtThe pointC  sphere, and Euler angles , ¢, are given by the relations
remains fixed under control actidiB), but under control action

(A) moves away fronf, as @ increases, and convergesRpas 6
converges to zero.

3.2 Prelude to Complete Reconfiguration. Consider the
initial configuration of the sphere in Fig. 3, where

y=Yi, 0=0, aj+¢i=p (4)
At the initial configuration, where9=0, P is at the vertically
upright position andR lies on the diametrical circle in thgy
plane, at orientatioB; relative to thex axis. Due to singularity of
the z-y-z Euler angle representation; is arbitrary. This implies
that we can arbitrarily choose the directionxgfaxis relative tax
axis. Onceq; has been chosenp; is computed from Eq(4)
according to the relation; = 8;— «; . Now consider thé¢A)-(B)-
(A) sequence of control actions, where

X:Xi ,

1. Control action(A) changesd from =0, to = 6’,

2. Control action(B) changes the direction of the, axis by
angleA«, and

3. Control action(A) changes from 8= 6', back to6=0.

ai=aitAa

™

di=¢i+AP

The negative angles Ao, — ¢, — B¢, and the negative angular
velocity — ¢, in Fig. 3 imply that these vectors are opposite in
sense to their defined positive directions. Using E§s—(7), it
can be readily shown that

ABE(Bi—Bi)=Aa(l—sect’) ®)

In Eq. (8), AB depends o\« and #’'. However,Aa and#’ are
not independent quantities; it can be verified from Figs. 2 and 3
that they are related by the expression

=

4

z i clockwise path for Step 2

V),

V’ ’a,

Xel=_"]

b\ S N
X, C Bl m“ “

Xt fe F(x, ¥;) = * )
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Fig. 3 Motion of the sphere under
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A [Zarcsir[ r/2(tand’ —6’)] for counter-clockwise path in step 2 ()
a|= 9a

2{m—arcsin[ r/2(tand’—0’)]} for clockwise path in step 2
wherer£[ (x;—x;)?+ (ys—Y;)?]*? is the distance between initial and final Cartesian coordinates of the sphere. Considering the fact
that A« is positive for counter-clockwise paths and negative otherwise(3g.can be written more precisely as

2 arcsin r/2(tand’ — 6")] for counter-clockwise path in step 2
:{Z{arcsin[ r/2(tand’ —6')]—m} for clockwise path in step 2 (9b)

3.3 Geometric Algorithm for Complete Reconfiguration.
In this section, we extend th€d)-(B)-(A) sequence of control
actions to converge the sphere from its arbitrary initial configura-

sequence of control actions, is implicitly a function®é alone, tion, described by the Cartesian coordinates ang-z Euler
for a given value of. To keepr unchanged, consider variations inangies

A« that do not change the initial and final positions of the sphere
in Fig. 3. The feasible variation id « can be determined from the (X,y,,0,¢)=(Xq.Yo,a0,00,P0) (10=)
locus ofC, also shown in Fig. 3. Sinc€ must be equidistant from . . ) . L
the initial location, F=(x,y,), and the final location,F (O its final configuration satisfying Eq1), namely

=(X;,Y1), t_he I_oc_:u_s ofC is_a_ _straight I_ine that c_)rthogonally_ bi- x=0, y=0, 6=0, a+¢=4; (100)
sects the line joining the initial and final locations. Wheénis

located on the opposite side of this line from the circular Are, The constraint on the final configuration, namely ¢= g, may

is an acute angle; it is zero wheh lies at infinity and it ap- create the wrong impression that our objective is to reconfigure
proachesr asC approaches the line. Whedis on the same side the sphere onto a manifold in the configuration space, rather than
of the line as the circular ard « is obtuse; it equalsr whenCis @ single point. This impression can be quickly dispelled with the
on the line, and it approachesr2when C approaches infinity. reasoning that all configurations of the sphere, described by Eq.
Clearly, 0<A a<2 for the counter-clockwise path in step 2. The(10b), are physically one and the same. This unique configuration,
range ofA « for the clockwise path can be similarly shown to bavhich lacks a unique description in terms of Euler angle param-
—2m<Aa<0. Using Eq.(9b) to obtaing’ for different values of €ters, is also referred to as the singular configuration.

Aa, we computeA 8 for both clockwise and counter-clockwise We now present our algorithm with the help of Fig. 5 In this
paths using Eq(8), for different values of. These plots of\ 8 flgure,.the initial configuration of the sphere, descrlbed by Eq.
versusA « are shown in Fig. 4. For the specific values dhat we (108), is denoted by(1). As the first step of our algorithm, we
considered, it is cleah 8 continuously assumes values over £xecute control actioA) whereby6 is changed fromg= 6, to
range greater than72 For example, for=2 and a counter- 6=0. This brings the Ca_rte3|an coordlna_tes of the sphere center
clockwise pathA B assumes values over a range of @ith A~ from (Xo.,Yo) to (x;,y;), given by the relations

in the rangea<Aa<Db. The same holds true far=10 along a
clockwise path, when « in the range—c<Aa<—d. Based on
the plots above, we assert that an arbitrary value\ 8f can be Since §=0 at this new configuration, denoted K8) in Fig. 5,
achieved over a range of#2for any fixed value ofr. In the point P is vertically upright andR is located on the equatorial
sequel, it seems reasonable to summarize thdAiB)-(A) se- circle, orientateds; with respect to thex axis. Since§=0, the
qguence of control actions, apart from pure translation of thealue of 8; can be obtained from the initial configuration param-
sphere, can arbitrarily rotate the sphere about the vertical axiseters as

From Egs(8) and(9b), we can infer that\ 8, for the (A)-(B)-(A)

Xi=(Xg— 0 COSag), Yi=(Yo— tpSinay) (11)

Bi=agt g (12)

Under control actiofA), the center of rotation for control action
(B), discussed in Section 3.1, moves from the coordinates denoted
by Co, to (X;,yi)-

Now, our goal, in terms of reconfiguration, is to translate the
sphere from X;,y;) to (0,0), and reorient the sphere through a
pure rotation about the vertical, by angle3. The desired dis-
tance of translatiorr, and angle of rotatiom\ 3, can be computed
as

r=02+yHYv2  AB=(Bi—B) (13)

To achieve the desired translation, and rotation about the vertical,
we execute théA)-(B)-(A) sequence of control actions, discussed
in the previous section. The motion of the sphere under this se-
qguence of control actions is shown in Fig. 5 by path segments
(2)-(3), (3)-(4), and (4)-(5), respectively. As the sphere moves
from (2)-(3), # changes fromp=0 to 6=6’, and the center of
rotation for control actioB) moves from §;,y;) to C=(a,b).
Subsequently, during control actidB), the sphere moves along
circular arc(3)-(4) with center of rotation fixed aE. During this

-2n -n 0 T 2r  motion @ is maintained constant & . Though counter-clockwise
2.56 direction of motion was chosen with control acti@), clockwise
-Cc -d a b Lo . . .
Ao direction of motion can also be chosen. Finally, control act®n
Fig.4 Plotof A versus Aa for different values of r,shownfor  brings the sphere frort4)-(5). The configuration of the sphere at
both counter-clockwise and clockwise paths (5) is in accordance with Eq10b).
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To solve the problem mathematically, we first use the values of2. The graphs in Fig. 4 indicate thAt3 does not assume val-

r andA B obtained from Eq(13), to numerically computéd « and

0’ using Egs.(8) and (9b). Once A« has been computed, the

coordinates ofC=(a,b) can be obtained from the following
equations

(@2+b?)=(x— )%+ (y;—b)?, SM“’Z):W
(14)

since C is equidistant from both coordinateg;(y;) and (0,0).
Having solved fora andb one can verify the value of’ obtained
earlier with that obtained from the relation (téh-6')=a?+b?,
derived from Fig. 2. From the coordinates ©f we computeg;
from the relation

tana; = (y;—b)/(x;—a) (15)

The value ofe; is useful for computing the direction of rolling for

the path segmen(®)-(3). The distance of rolling depends on the
value of #’, which is known. The remaining manuevers are com-

prised of motion of the sphere alonig:circular arc(3)-(4) under
control action(B) that subtends angle« at the center of rotation,
C, andii) straight line(4)-(5) inclined at anglea;=(«a;+Aa)
with respect to thex axis, under control actiorfA) for a net
rotation

of ¢'.

We conclude this section with a few remarks. Simulation results
presented in Section 5 will provide a better understanding of our

algorithm, and the steps involved.

1. The results in Fig. 4 indicate that theB-A« curves are
sharper for smaller values of This implies that small errors
in the numerical computation df« (from a given value of
AB) will result in large errors imMA 3 at the end of the ma-
neuver, for small values af This problem can be trivially

ues in the rang€0, 27| for A« in the same range, for all
values ofr. This does not pose problems sink@ continu-
ously assumes values over a range greater thafo® dif-
ferent values of. Forr=5 and a counter-clockwise path,
for example, we can use a value®& (approximatelys/3)
that will result inA 8= — 2, equivalent taA =0 (a value
than cannot be directly achieved with any valueAaf).

. The algorithm by Li and Canny7] requires one trivial and

two non-trivial maneuvers for reconfiguration of the sphere.
The first non-trivial maneuver is an equatorial spherical tri-
angle maneuver that converges two of the three orientation
coordinates of the sphere. The second non-trivial maneuver
is based on a polhode trajectory that converges the third
orientation coordinate. In comparison, our algorithm re-
quires one trivial maneuver based on control actidhand

one non-trivial maneuver based on {#e-(B)-(A) sequence

of control actions. Clearly, the sphere is reconfigured in
fewer number of steps using our algorithm.

4. It is clear from our algorithm that the sphere can be com-

pletely reconfigured ik, y, # can be converged to zero, and
B can be converged to an arbitrary value[ iy 27r]. Since
the change i3, A, is implicitly a function of the change

in «, Aa, for all values ofr, and hypothetically there exists
A« values for all values ofA B effectively in[0, 27], the
controllability of the sphere can be studied from the reduced
set of kinematic relations in E¢2), namely

X sina cosa

y —cosa sina

o=l o Jext| 1 ey (16)
o cot 6 0

eliminated by rolling the sphere farther away from the origi®pecifically, by constructing the distribution comprised of the
of the Cartesian coordinate frame, at the initial point of timecontrol vectors above, and their iterated Lie brackets, as follows

Xy

1)

&)

X1

Fig. 5 Basis for complete reconfiguration of the sphere
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sina cosa —sinacotd —cosa coseéd(1+ coso)

—cosa sina  cosacotd —sina coseéd(1+ cos)
0 1 0 0
cotd O coseéd 0

v=(f g [fal [f[f.gl]]=

and showing that it has full rank, one can claim complete contrakrms of dimensions of the spherical triangle. These expressions
lability. This eliminates the need for using the five-state kinematigill be used to solve the reconfiguration problem.

model and defining two separate charts of the atlas covering theConsider the spherical triangleM N, inscribed on the surface
sphere for the proof of controlability7]. of the unit sphere, as shown in Figa$ The length of the sides of

5. The algorithm by Jurdjevic provides optimal trajectories bl}Pe triangle, which are arcs of great circles, aré, andc. The

require numerical computation of elliptic functions and inte:"mgl(“S opposite to these sides Ar@, andC, respectively. Let the

grals. During implementation, the elliptic functions and in__sphere initially be at the origin of they coordinate frame, shown

tegrals will have to be computed at every step to determin@ Fig_. 6(b). At this Io_cation, let the sphere be _oriented suc_h that
the instantaneous direction of rolling of the sphere. In conﬁt-hS plplnt of con:jact W|th|the ground IM I‘(i“(_j the_lrﬁar?e OMN is
parison, our algorithm provides reconfiguration using a cif'€ IN€ oriented at anglg counter-clockwise with the negatiye

cular arc and straight line segments, whose parameters n%étf Since the spherical triangle can be arbitrarily inscribed on

- - face of the sphere, the initial direction of rafl, is arbi-
to be computed only once. Clearly, our algorithm require € surtace - 3 2 S
significantly less computation than the algorithm by Jur rary. Starting at poinM, the sphere is rolled along this direction

jevic [8]. Also, due to the complex nature of the optima y distancea whereby the contact point changesNoThe sphere

trajectories, the error in the final configuration of the sphe%]en r_oIIs distancé aft_er a_Ieft turn of angle V‘.”th the previous
is likely to be smaller for our algorithm. irection of travel. This brings the contact point on the sphere to

6. Although the motion planning problem provides reconfigLE)Finally, the sphere rolls distanceafter a left turn of angle\.

ration trajectories that can be tracked using a tracking copt'S r?“ﬁms tEe Co.maﬁt poi?t on.thehspher.M'STheas)finSI po?ji-
troller, the more desirable approach to reconfiguration KON Of the sphere in they plane is shown in Fig. ®). Here,
through the design of a stabilizing controller. The approact dé represent _the _dlstance and direction of trapslatlpn, respec-
by Li and Canny will not lend itself well to the design of atlvely. The direction is measured counter-clockwise with respect
stabilizing controller since it relies on equatorial spherica{P the positivex axis. Using planar trigonometry, we can exprass

triangle maneuvers. The same can be said about the optirftdfl @ by the relations

trajectories of Jurdjevic since optimal control formulations y2_ 524 p24 24 24¢ cog A+ C)—2ab cosC— 2bc cosA
for nonlinear systems generally do not result in feedback (17)
control strategies. In comparison, our motion planning algo-

rithm lends itself very well to the design of a stabilizing a—b cosC+ccogA+C)

controller. Using our algorithm as a basis, we have success- o=y+ arcta+ CSINATC)—b sinC (18)
fully developed a feedback control strategy and have thereby

resolved an important problem that has eluded many rRow, leti, j, k denote unit vectors along the inertially fixed coor-
searchers till date. The feedback control strategy will be prgiqate axes y, z, respectively, and I, j’, k' denote orthogonal

sented in our next paper. unit vectors that are fixed to the sphere. Assume that the unit
. ) . . ) vector triads are coincident before the spherical triangle maneu-
4 Motion Planning Using Spherical Triangles ver. Since rolling along a spherical triangle is equivalent to a pure

. . . . rotation about the axis, the unit vector triads at the end of the
4.; Effect of Rolling Along a Sphgrlcal Triangle. In this _maneuver will be related by the expression
section, we present our second algorithm for complete reconfigu-

ration of the sphere. This algorithm requires the contact point i’ cosa sinae O i
between the sphere and the ground to trace a triangle on the sur- . . .
face of the sphere. Since a spherical triangle is a closed path, the I"| 2| —sina cosa 0O J (19)
sphere undergoes a net rotation about the vertical axis at the end Kk’ 0 0 1 k

of the maneuver. The sphere also translates since the image of the

spherical triangle on the ground is not a closed path. In this sec-ere is the amount of rotation about the positizeaxis. To
tion, we obtain expressions for the net translation and rotation M e . p :
obtain an expression fax, we recall the general expression for

rotation of a vector about axisl by angley, to formr’

y r'=(1—cosy)(l.r) I+cosy r+siny (I Xr) (20)

three consecutive rotations, withy i=i, y=a; ii) |=[—cos
X Ci+sinCj], y=b, and iiij I=[cos@+C)i—sin(A+C)j], v=c,
Al JL the composite rotation matrix can be computed. After tedious sim-
plification using spherical trigonometric identitigk3], the entries
v C/b of the rotation matrix can be showid?2] to be identical to the
entries of the matrix in Eq(19), with

d/ﬁi\ Knowing that the spherical triangle maneuver is comprised of
0 (¢

N a=7—(A+B+C)<0 (21a)

(b

) The path taken by the sphere in Fighbcan be considered as
Fig. 6 (a) A spherical triangle, (b) Image of the spherical tri- left-handed since left turns were takenMitand L. For a right-
angle on the x-y plane handed pathg takes the fornj12]
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Fig. 7 Open loop reconfiguration using spherical triangles
a=(A+B+C)—7=0 (21b) achieved with one or two spherical triangle maneuvers. The do-

. ) . ) . main ofd is [0,7] since the unit sphere rolls no more thanin
Using the spherical trigonometric relati¢n3] for the area of a he second step of our algorithm. The domairds defined over
spherical triangle, we can establish from Eg1) that the net 0,7] and not[—r,m] since negative values of can be
rotation of a sphere tracing a triangle on its surface is equal to | ghieved using Ieft-k;anded paths.
solid angle subtended by the triangle. The same result is stated by, prove existence of a solution, we look at the possible set of
the Gauss-Bonet theorem of parallel transfdiit In summary, 4 and values that can be achieved with feasible triangle param-
when a sphere rolls along a spherical triangle, the final location gfs g namely &a,b,C<. For every set of, b, and C, we

the sphere can be computed using EGS) and (18); the net getermineA, B, andc using the spherical trigonometric identities
rotation of the sphere is about the vertical axis and can be co 3

puted using Eq(21a) or (21b), depending upon whether the path
is left-handed or right-handed, respectively.

sin[(a—Db)/2] )
sin[ (a+b)/2] tanC/2

cos[(a—b)/2] )

A—-B= 2arcta|€
4.2 Complete Reconfiguration Strategy. In this section we
formulate an open loop strategy for completely reconfiguring the
sphere. In reference to Fig. 7, this constitutes positioning the A+ B:ZarctarQ
sphere at the origin of they frame, locating® (an arbitrary point cos(a+b)/2] tanC/2
on the sphereat the top of the sphere, and orientiRy(a fixed tan[ (a+b)/2] cos[ (A+B)/2]
point on the equatorial circle, defined relativeR) in some de- c=2arctar€
sired direction on the horizontal plane. At the initial configuration, cos[(A—=B)/2]
marked 1 in Fig. 7, poinP is arbitrarily located aP(1), andRis  All values are then substituted in Eq4.7), (18), and (21b) to
located on the equatorial circle relativeRpatR(1). Ourstrategy numerically computel anda. These set values are shown by the
consists of three steps. First, the sphere rolls from the initial cogray area in the first quadrant in Fig. 8. Clearly, not all values of
figuration to the origin of thexy frame, denoted by the straightd and «, 0=<d,a<+, can be achieved with a single spherical
line path 1-2 in Fig. 7. At this timeP is located at an arbitrary
point on the sphere?(2), andR is located aRR(2). Second, the
sphere rolls away from the origin to brirfg directly to the top,

(22)

P(3). This is depicted by the straight line trajectory-3. At this )%
configuration,R, depicted byR(3), is located on the horizontal /\\
diametrical plane at some arbitrary orientation. Finally, the sphere / \
executes a spherical triangle maneuves 8—5—6 such that it

translates back to the origin of they frame and its net rotation / o \
about the vertical axis poinRin the desired direction. In confor-

mity with Fig. 6, the initial direction of rolling for the spherical
triangle maneuver is chosen along the line oriengedounter- 3 3 1
clockwise with respect to the negatiyeaxis.

The first two steps of our algorithm are trivial to implement.
The last step requires that we solve for a spherical triangle whose 2
sides and angles satisfy Eq4.7), (18), and (21a) or (21b), for 0 d B
given values ofl, ¢, anda. The value ofy is assigned suitably
to satisfy Eq.(18), which may not be satisfied otherwise.

4.3 Existense of a Solution. In this section, we show that it 4 2
is possible to arbitrarily reconfigure the sphere using one or at-
most two spherical triangle maneuvers. Since an arbitrary value of  _; = 0 A
¢ can be achieved through a proper choicefofve only need to
show that any value ofl and a, O<d<, O<a<w, can be Fig. 8 Reachable space of d-a
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P(3)

______

Final Configuration

Fig. 9 Reconfiguration of the sphere using the geometric motion planner

triangle maneuver. However, we assert that an arbitdeapnda 5 Simulation Results
can be achieved with at most two triangle maneuvers. ] ) ) ]

To prove our assertion, we first realize thtcan be arbitrary 5.1 Geometric Motion Planner. We simulate a reconfigu-
since ¢ is arbitrary, and in particular, can vary by 180° for the'atio_n maneuver of an unit _sphere_radius based on the ge_ometric
same value ofl. This implies that for every achievabdn [0,7], ~Motion ple_m_n_er pregented_ in Section 3. In _accordance with Eq.
we can effectively achieve d in [ — ,0]. This, in addition to the (10a), the initial configuration of the sphere is assumed to be
fact that right- and left-handed paths result in opposing signs of _ o spo o
suggests that we expand the set of achievablend o, — (X0.Yo, @0, 00, o) =(5,5,~60%,45°,~30°) (23)
<d,e<m, as shown in Fig. 8. Now consider the straight lines lyhere the units are in meters and degrees, repectively. The final
2, 3, and 4 in Fig. 8, which are conservative estimates of th®nfiguration, defined by Eq10b), is chosen to satisfy
reachable space df «. We translate lines 2 and 3 along line 1 to
generate the rectangl®BCD. It can be argued that any point x=0, y=0, 6=0°, at+¢=0° (230)

inside ABCD can be reached by first moving along line 1 and . ) . . . .
then along a line parallel to line 2 or 3, by appropriate distancetl€ final configuration may give the false impression that we are

Since the rectangular area contains the entire regierd,@ addressing a problem of reconfiguration to an equilibrium mani-

<, it can be argued that the sphere can be arbitrarily reconfi Jd'(;gt%n:ezﬁgs;ﬁgS;ISSicI]TJesggﬁ%gugr;'agtiomog‘et\tlweer’svp\)/ﬁekrzow that

ured using at most two spherical triangle maneuvers in the thi The simulation results are shown in Fig. 9. The position and

step of our algorithm. . > . . 5
. . . . orientation of the sphere is depicted by poiRf®Q, andR. HereQ
We conclude this section by summarizing the merits of Yenotes the sphere center, and pof@andR lie at the intersec-

_algqrit_hm. Our algorithm, based on sphe_rical triangle Maneuvetdy, of the sphere with the positi|g andx; axes, respectively, in
is similar to the second step of the algorithm proposed by Li a cordance with our discussion in Section 2. At the initial con-

Canny[7]. It is however more general since it is not restricted tQquration. inset in Fig. 9, the three points are locatedPét)
_the use of equatorial spherical trjangles. _As a direct conseque 1), andR(1), respectively. In the first step of our algorithm,
it eliminates the need for the third step in Li and Canny’s algqhey move to location®(2), Q(2), andR(2), under actior(A).

rithm [7]. In comparison to the algorithm by Jurdjevic, where they; this configurationP(2) is vertically aboveQ(2) whosex and
trajectories are defined in terms of elliptic functions and integralg.coordinates can be obtained using Etf)

trajectories designed by our algorithm are comprised only of
straight line segments. This provides the scope for much easier x;=(xy— 6, COSag) =4.61, Yy;=(yo— 6 Sin ay) =5.68
implementation. (24)
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T . This implies that ifP is the top most point on the sphere aRds

on the equatorial circle in the direction of tleaxis at the initial
point of time, P should be again at the top in the final configura-
tion, andR should be on the equatorial circle in the direction of
the negativey axis. If we denote the center of the sphereQyythe
coordinates ofQ at the initial time can be computed from the
values ofd and ¢ asQ=(—1.0,—1.5). We choose a left-handed
{1 path sincea is negative and numerically compute the triangle
parameters using Egl7), (18), (21a), and(22). Using a value of
66.31° fory (the value ofiy can be chosen arbitrarily; we chose it

i Q(5) | based on the value in Eq. (18), the spherical triangle param-
v
eters were obtained numerically
-1.5F 1
PG) a=1.862, b=1.198, c¢=1.760, A=103.81°,
] B=70.78°, C=9541° (30)

where the units of the angles are degrees, and that of the sides are
1 meters or radians since the sphere has a unit radius. The triangle
P@&) parameters and the angfeare used to depict the motion of the
X . . . . . . . s sphere in Fig. 10. In conformity with our discussion in Section
2 <5 -1 05 0 05 1 15 2 4.2, the configuration of the sphere at the start of the spherical
X triangle maneuver is depicted by poirR¢3), Q(3), andR(3).
At the end of the maneuver, the configuration is depicted by points
P(6), Q(6), andR(6). Indeed, in the final configuration the
sphere is at the origin, poift is at the top, and poirR is on the
O(?quatorial circle in the direction of the negatiyeuxis.

P(), Q(6)

Fig. 10 A spherical triangle maneuver for reconfiguration

Also, R(2) is located on the equatorial circle at an angle
—90° with respect to the& axis. The orientation oR(2) can be

verified from Eq.(12)
R . R We presented two open-loop control strategies for reconfigura-
Bi=(ag+ ¢o)=—60°-30°=—90 (25)  tion of the rolling sphere. The reconfiguration problem, which
The reconfiguration problem now requires execution of g refers to the task of converging the sphere to an arbitrary position
(B)-(A) sequence of control actions that will translate the sphevéth an arbitrary orientation, is challenging since the kinematic
by distancer, and rotate it about the vertical by angles. The model of the sphere cannot be reduced to chained form; this ren-
magnitude ofr andA B can be computed from E@13) as ders all regimented nonholonomic motion planning algorithms in-
2 aup A applicable. Using Euler angle coordinates for description of
r=(x{+y5)"=7.07, AB=(Bs—B;))=90 (26)  sphere orientation and choosing the final orientation to lie at the

We choose a counter-clockwise path for the sphere unddithe singularity of the description, the first control strategy provides a
(B)-(A) sequence of control actions. However, since there existénple and effective solution. It also simplifies the reachability
no solution forA« (refer to Fig. 4 when AS=/2 rad andr problem, which can be ascertained from a reduced-order system.
—7.07, we changd S to —3.5x rad by subtracting # rad from The algorithm invokes alternating inputs for reconfiguration and

its actual value. This value df 3 yields from Egs(8) and(9b)  the resulting solution trajectories are comprised of simple circular
arcs and straight line segments. Our second control strategy is

Aa=256 rad=146.7°, ¢'=1.38rad=79.1°  (27) conceptually simpler and results in trajectories comprised of

The computed value oha in Eq. (27), which can be verified straight line segments only. Based on the Ga.uss-Bonet theorem of
from Fig. 4, along withx; andy; values in Eq.(24) yields the pa_raIIeI transport, our second algorithm achieves reconflguratlon
coordinates of the center of rotation from Eq4) using spherical triangle maneuvers, and by not restricting the
choice to equatorial triangles, provides a generalization of the
a=3.15, b=2.15 (28) approach by Li and Canniy7]. As compared to the algorithm by

The values ofx;, y;, a andb in Egs. (24) and (28) yields Jurdjevic[8], which requires elliptic functions and integrals to be
—67.5° from Elq’(i/IS)’ ' y ' computed at every step, both our algorithms are simpler, compu-

The motion of the sphere under tia)-(B)-(A) sequence of tationally efficient, and easier to implement. Our first algorithm

: ; : ; ditionally provides the scope for design of feedback control
fﬁ;t;?rlei%t(';njfgf \gvodsgnae’dzt:;)gmlelet_le_z:]);éFlljrr?rt],gtshepirnk;geéolIs i}ﬂategies. The algorithms by Li and Can} and Jurdjevid 8]
andR to the locationsP(3), Q(3), andR(3), respectively. Next, do not lend themselves well to this important problem.
with (a,b)=(3.15,2.15) as the center of rotation, the sphere
moves along a circular path for a net angular displacement Agknowledgment

Aa=146.7°. At the end of this motion, the three points are lo- The first author gratefully acknowledges the support provided

cated atP(4), Q(4), andR(4), respectively. Finally, the sphere py National Science Foundation, NSF Grant No. CMS-9800343,
rolls to the origin of thex-y coordinate frame. This completes they carrying out this research.

reconfiguration which is evident from the coordinatB¢5),
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