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Motion Planning for a Spherical
Mobile Robot: Revisiting the
Classical Ball-Plate Problem
In comparison to wheeled robots, spherical mobile robots offer greater mobility, stab
and scope for operation in hazardous environments. Inspite of these advantages, sp
designs have failed to gain popularity due to complexity of their motion planning
control problems. In this paper, we address the motion planning problem for the ro
sphere, often referred in the literature as the ‘‘ball-plate problem,’’ and propose
different algorithms for reconfiguration. The first algorithm, based on simple geom
uses a standard kinematic model and invokes alternating inputs to obtain a sol
comprised of circular arcs and straight line segments. The second algorithm is bas
the Gauss-Bonet theorem of parallel transport and achieves reconfiguration thr
spherical triangle maneuvers. While the second algorithm is inherently simple and
vides a solution comprised of straight line segments only, the first algorithm provide
basis for development of a stabilizing controller. Our stabilizing controller, which will
presented in our next paper, will be the first solution to a problem that has eluded m
researchers since the kinematic model of the sphere cannot be converted to chained
Both our algorithms require numerical computation of a small number of parameters
provide the scope for easy implementation.@DOI: 10.1115/1.1513177#
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1 Introduction
Mobile robots are typically designed with wheels, likely due

our kinship with automobiles. Relying on traditional use of t
wheel as a quasi-static device, mobility and stability of the rob
are enhanced using multiple wheels, large wheels, multi-wh
drives, broad wheel bases, traction enhancing devices, articu
body configurations, etc. The single-wheel robot recently p
posed by Brown and Xu@1# represents a paradigm shift in mobi
robot design. This robot, known as the Gyrover, exploits gy
scopic forces for steering and stability and has certain advant
over traditional designs. Similar to the Gyrover, which diffe
from traditional quasi-static models, a few designs have been
posed for spherical wheels with internal mechanisms for prop
sion @2–4#. The robot designed by Halme et al.@3# incorporates a
single-wheeled device constrained inside the spherical wheel
device generates motion by creating unbalance and changes
ing by turning the wheel axis. The design by Bicchi et al.@4# is
similar but employs a four-wheeled car to generate the unbala
The omnidirectional robot by Koshiyama and Yamafuji@2# has a
limited range of lateral roll due to its arch-shaped body. Natura
it fails to completely exploit the maneuverability associated w
spherical exo-skeletons.

We are independently engaged in research and developme
a spherical mobile robot, and in this paper, we address the
holonomic motion planning problem. This problem, also imp
tant in its own right, refers to the task of converging a sphe
rolling without slipping on a flat surface, from any initial configu
ration to an arbitrary final configuration. The problem is partic
larly interesting since the kinematic model of the sphere canno
reduced to chained-form@5#; this renders regimented nonholo
nomic motion planning and control algorithms inapplicable@6#. In
reality, the rolling sphere is a completely controllable system,
trajectories for reconfiguration exist. Although differentia
geometric tools can ascertain the existence of such trajectories@7#,

Contributed by the Dynamic Systems and Control Division of THE AMERICAN
SOCIETY OF MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF
DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received by the
ASME Dynamic Systems and Control Division, July 2000; final revision, Mar
2002. Associate Editor: Y. Hurmuzlu.
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they do not provide solution trajectories. To obtain a feasible
lution, a three-step algorithm was proposed by Li and Canny@7#.
The position coordinates of the sphere are converged to their
sired values in the first step of the algorithm. In the second s
two of the three orientation coordinates are converged using
Bracket-like motion. Such motion generates an equatorial sph
cal triangle on the surface of the sphere. The third step us
polhode to converge the last orientation coordinate.

The rolling sphere problem, also referred to as the ball-pl
problem, has been revisited in recent years. A control input tra
formation was proposed by Bicchi et al.@6# to obtain a kinematic
model of the sphere with a triangular structure. This struct
promises to simplify integration of the state equations for altern
ing inputs and arriving at a system of nonlinear equations. T
equations can be solved taking additional criteria into accou
such as avoiding workspace limits, or minimizing the length
the path, but their iterative solution demands excessive comp
tional time. In the words of the authors@6#, the solution process
may fail because of ‘‘abnormal extremals encountered along
path.’’ An optimal solution to the ball-plate problem, which min
mizes the integral of the kinetic energy of the ball along the pa
was proposed by Jurdjevic@8#. The results are elegant and indica
that optimal trajectories are characterized by elliptic functions
may be noted that elliptic functions have been used earlie
construct the controllability of nonholonomic systems@9#, and
design optimal trajectories for mobile robots@10#. Despite the
elegance and appeal of the closed-form structure, the optimal
jectories require computation of elliptic functions and integrals
every step and pose challenges in implementation.

In this paper, we present two computationally efficient motio
planning algorithms for the rolling sphere. A kinematic model
the sphere is first presented in Section 2. This model provides
basis for the first algorithm, which is presented in Section 3. T
first algorithm uses plane trigonometry to obtain polhode solut
trajectories. Although these polhodes bear resemblance to the
jectories generated by the third step of Li and Canny’s algorit
@7#, they are more general and reconfigure the sphere in fe
steps. We present our second algorithm in Section 4. This a
rithm, based on spherical trigonometry, requires at most
spherical triangle maneuvers for complete reconfiguration. I

ch
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Fig. 1 Initial and final configurations of sphere
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similar to the second step of the algorithm by Li and Canny@7#,
but eliminates the third step by using general spherical triang
as opposed to equatorial triangles. The Gauss-Bonet theorem@11#
provides a basis for our second algorithm but the basis can
independently established using spherical trigonometry@12#.
Simulation results for both our algorithms are presented in Sec
5. Section 6 provides concluding remarks and future resea
directions.

2 Problem Statement and Kinematic Model
The configuration of a sphere rolling on a flat surface can

described by the two Cartesian coordinates of the center of
sphere, and three coordinates describing the sphere orientatio
Fig. 1~a! the center of the sphere is defined by pointQ; the ori-
entation is described by pointsP and R, whereP is an arbitrary
point on the surface of the sphere, andR is an arbitrary point on
the equatorial circle, defined relative toP. The complete recon-
figuration of the sphere refers to the task of convergingQ to the
origin of the Cartesian coordinate frame,P to the vertically up-
right position, andR to some desired orientation,b f , relative to
the x axis. The final desired configuration of the sphere is sho
in Fig. 1~b!.

To obtain a kinematic model of the sphere, we denote Carte
coordinates of the sphere center byQ[(x,y). We adopt thez-y-z
Euler angle sequence (a,u,f) to represent the orientation of th
sphere. We first translate thexyz frame to the center of the spher
and rotate it about the positivez axis by anglea, 2p<a<p, to
obtain framex1y1z1 . We rotate framex1y1z1 about they1 axis by
angleu, 0<u<p, to obtain framex2y2z2 . The pointP is located
at the intersection point of thez2 axis with the sphere surface. Th
x2y2z2 frame is rotated about thez2 axis by anglef to obtain
framex3y3z3 . The pointR is located at the intersection point o
the x3 axis and the sphere surface. The framesxyz, x1y1z1 ,
x2y2z2 , x3y3z3 , andz-y-z Euler angles (a,u,f) are all shown in
Fig. 1~a!. The reorientation of the sphere refers to the task
bringing P to the vertically upright position, andR, which then
lies on the diametrical circle in thexy plane, to the orientationb f
with respect to thex axis. This can be achieved withu50, and
a1f5b f , irrespective of the individual values of the Eule
anglesa, f, as shown in Fig. 1~b!. Therefore, the sphere can b
completely reconfigured by satisfying

x50, y50, u50, a1f5b f (1)

The above equation may create the false impression that ou
jective is to converge the sphere to a configuration manifo
However, it can be verified from Fig. 1~b! that Eq.~1! represents
a unique configuration of the sphere.
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In the sequel, we assume the sphere to have unity radius w
out any loss of generality. Also, we denote the angular veloci
of the sphere about thex1 ,y1 ,z1 axes asvx

1 ,vy
1 ,vz

1 , respectively.
Assumingvz

150, the state equations can be written as

ẋ5vy
1 cosa1vx

1 sina (2a)

ẏ5vy
1 sina2vx

1 cosa (2b)

u̇5vy
1 (2c)

ȧ52vx
1 cotu (2d)

ḟ5vx
1 cosecu (2e)

In the model above, the first three equations can be derived
ply. The expression forȧ can be obtained from the relative veloc
ity of P with respect toQ, when the sphere rotates with angul
velocity vx

1 . The angular velocityḟ is simply the vector sum of
the angular velocitiesȧ and vx

1 . Alternatively, Eqs.~2c!, ~2d!,
and~2e!, can be derived from the relation between thez-y-z Euler
angle ratesȧ,u̇,ḟ, and the angular velocitiesvx

1 ,vy
1 ,vz

1 , subject
to the constraintvz

150.

3 Simple Geometric Motion Planner

3.1 Effect of Individual Control Actions. Consider the
motion of the sphere described by the kinematic model in Eq.~2!,
for the individual control actions

~A! vy
1Þ0, vx

150

~B! vx
1Þ0, vy

150, uÞ0

The motion of the sphere for these actions are explained with
help of Fig. 2. For action~A!, the sphere moves along straight lin
CF asu changes. LetF be the point on this straight line where th
sphere would haveu50. Since the sphere rolls without slipping
this point remains invariant under control action~A!. For control
action ~B!, the instantaneous radius of the path traced by
sphere on thexy plane can be computed using Eq.~2! as follows

r5U~ ẋ21 ẏ2!3/2

ẋ ÿ2 ẏ ẍ
U 5tanu (3)
DECEMBER 2002, Vol. 124 Õ 503
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Sincevy
150, u is maintained constant. This implies that the co

tact point of the sphere moves along a circular path; the cente
this circle is located atC in Fig. 2. Along with the contact point
pointsP andF also move along circular paths; the center of the
paths lie on the vertical axis that passes throughC. The pointC
remains fixed under control action~B!, but under control action
~A! moves away fromF, asu increases, and converges toF, asu
converges to zero.

3.2 Prelude to Complete Reconfiguration. Consider the
initial configuration of the sphere in Fig. 3, where

x5xi , y5yi , u50, a i1f i5b i (4)

At the initial configuration, whereu50, P is at the vertically
upright position andR lies on the diametrical circle in thexy
plane, at orientationb i relative to thex axis. Due to singularity of
the z-y-z Euler angle representation,a i is arbitrary. This implies
that we can arbitrarily choose the direction ofx1 axis relative tox
axis. Oncea i has been chosen,f i is computed from Eq.~4!
according to the relationf i5b i2a i . Now consider the~A!-~B!-
~A! sequence of control actions, where

1. Control action~A! changesu from u50, to u5u8,
2. Control action~B! changes the direction of thex1 axis by

angleDa, and
3. Control action~A! changesu from u5u8, back tou50.

Fig. 2 Motion of the sphere under control actions „A… and „B…
504 Õ Vol. 124, DECEMBER 2002
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At the end of the first step, shown in Fig. 3,P moves away from
its vertically upright position untilQP subtends angleu8 with the
vertical. Thex2 axis, initially coincident with thex1 axis, now
subtends angleu8 with the x1 axis in the vertical plane. During
step 2,u remains constant atu5u8, the sphere traces out a cir
cular arc on the ground, and thex1 axis changes direction to
remain pointed normal to the arc. Thex2 axis moves along with
the x1 axis, maintaining angleu8 with respect to it in the vertical
plane. During step 2, thex3 axis spins about thez2 axis, and at the
end of the maneuver undergoes a net rotation ofDf about it.
Since thex1 axis undergoes a change of orientation by angleDa
during the same time, we can use Eqs.~2d! and ~2e! to write

Df52secu8 Da (5)

During step 3, control action~A! returns the plane containing th
axesx2 , y2 , x3 , andy3 , to the plane containing the axesx, y, x1 ,
and y1 . At the end of the sequence of maneuvers, the spher
described by the configuration in Fig. 3, where

x5xf , y5yf , u50, a f1f f5b f (6)

and wherexf ,yf , denote the final Cartesian coordinates of t
sphere, and Euler anglesa f ,f f , are given by the relations

a f5a i1Da
(7)

f f5f i1Df

The negative angles2Df, 2f f , 2b f , and the negative angula
velocity 2ḟ, in Fig. 3 imply that these vectors are opposite
sense to their defined positive directions. Using Eqs.~5!–~7!, it
can be readily shown that

Db,~b f2b i !5Da~12secu8! (8)

In Eq. ~8!, Db depends onDa andu8. However,Da andu8 are
not independent quantities; it can be verified from Figs. 2 an
that they are related by the expression
Fig. 3 Motion of the sphere under „A…-„B…-„A… sequence of control actions
Transactions of the ASME



he fact
uDau5H 2 arcsin@ r /2 ~ tanu82u8!# for counter2clockwise path in step 2

2$p2arcsin@ r /2 ~ tanu82u8!#% for clockwise path in step 2
(9a)

wherer,@(xf2xi)
21(yf2yi)

2#1/2 is the distance between initial and final Cartesian coordinates of the sphere. Considering t
that Da is positive for counter-clockwise paths and negative otherwise, Eq.~9a! can be written more precisely as

Da5H 2 arcsin@ r /2 ~ tanu82u8!# for counter2clockwise path in step 2

2$arcsin@ r /2 ~ tanu82u8!#2p% for clockwise path in step 2
(9b)
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From Eqs.~8! and~9b!, we can infer thatDb, for the~A!-~B!-~A!
sequence of control actions, is implicitly a function ofDa alone,
for a given value ofr. To keepr unchanged, consider variations i
Da that do not change the initial and final positions of the sph
in Fig. 3. The feasible variation inDa can be determined from the
locus ofC, also shown in Fig. 3. SinceC must be equidistant from
the initial location, F5(xi ,yi), and the final location,F
5(xf ,yf), the locus ofC is a straight line that orthogonally bi
sects the line joining the initial and final locations. WhenC is
located on the opposite side of this line from the circular arc,Da
is an acute angle; it is zero whenC lies at infinity and it ap-
proachesp asC approaches the line. WhenC is on the same side
of the line as the circular arc,Da is obtuse; it equalsp whenC is
on the line, and it approaches 2p when C approaches infinity.
Clearly, 0<Da<2p for the counter-clockwise path in step 2. Th
range ofDa for the clockwise path can be similarly shown to b
22p<Da<0. Using Eq.~9b! to obtainu8 for different values of
Da, we computeDb for both clockwise and counter-clockwis
paths using Eq.~8!, for different values ofr. These plots ofDb
versusDa are shown in Fig. 4. For the specific values ofr that we
considered, it is clearDb continuously assumes values over
range greater than 2p. For example, forr 52 and a counter-
clockwise path,Db assumes values over a range of 2p with Da
in the rangea<Da<b. The same holds true forr 510 along a
clockwise path, whenDa in the range2c<Da<2d. Based on
the plots above, we assert that an arbitrary value ofDb can be
achieved over a range of 2p for any fixed value ofr. In the
sequel, it seems reasonable to summarize that an~A!-~B!-~A! se-
quence of control actions, apart from pure translation of
sphere, can arbitrarily rotate the sphere about the vertical axi

Fig. 4 Plot of Db versus Da for different values of r, shown for
both counter-clockwise and clockwise paths
Journal of Dynamic Systems, Measurement, and Control
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3.3 Geometric Algorithm for Complete Reconfiguration.
In this section, we extend the~A!-~B!-~A! sequence of contro
actions to converge the sphere from its arbitrary initial configu
tion, described by the Cartesian coordinates andz-y-z Euler
angles

~x,y,a,u,f!5~x0 ,y0 ,a0 ,u0 ,f0! (10a)

to its final configuration satisfying Eq.~1!, namely

x50, y50, u50, a1f5b f (10b)

The constraint on the final configuration, namelya1f5b f , may
create the wrong impression that our objective is to reconfig
the sphere onto a manifold in the configuration space, rather
a single point. This impression can be quickly dispelled with t
reasoning that all configurations of the sphere, described by
~10b!, are physically one and the same. This unique configurat
which lacks a unique description in terms of Euler angle para
eters, is also referred to as the singular configuration.

We now present our algorithm with the help of Fig. 5 In th
figure, the initial configuration of the sphere, described by E
~10a!, is denoted by~1!. As the first step of our algorithm, we
execute control action~A! wherebyu is changed fromu5u0 to
u50. This brings the Cartesian coordinates of the sphere ce
from (x0 ,y0) to (xi ,yi), given by the relations

xi5~x02u0 cosa0!, yi5~y02u0 sina0! (11)

Sinceu50 at this new configuration, denoted by~2! in Fig. 5,
point P is vertically upright andR is located on the equatoria
circle, orientatedb i with respect to thex axis. Sinceu50, the
value ofb i can be obtained from the initial configuration param
eters as

b i5a01f0 (12)

Under control action~A!, the center of rotation for control action
~B!, discussed in Section 3.1, moves from the coordinates den
by C0 , to (xi ,yi).

Now, our goal, in terms of reconfiguration, is to translate t
sphere from (xi ,yi) to ~0,0!, and reorient the sphere through
pure rotation about the vertical, by angleDb. The desired dis-
tance of translation,r, and angle of rotation,Db, can be computed
as

r 5~xi
21yi

2!1/2, Db5~b f2b i ! (13)

To achieve the desired translation, and rotation about the vert
we execute the~A!-~B!-~A! sequence of control actions, discuss
in the previous section. The motion of the sphere under this
quence of control actions is shown in Fig. 5 by path segme
~2!-~3!, ~3!-~4!, and ~4!-~5!, respectively. As the sphere move
from ~2!-~3!, u changes fromu50 to u5u8, and the center of
rotation for control action~B! moves from (xi ,yi) to C[(a,b).
Subsequently, during control action~B!, the sphere moves alon
circular arc~3!-~4! with center of rotation fixed atC. During this
motionu is maintained constant atu8. Though counter-clockwise
direction of motion was chosen with control action~B!, clockwise
direction of motion can also be chosen. Finally, control action~A!
brings the sphere from~4!-~5!. The configuration of the sphere a
~5! is in accordance with Eq.~10b!.
DECEMBER 2002, Vol. 124 Õ 505
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To solve the problem mathematically, we first use the value
r andDb obtained from Eq.~13!, to numerically computeDa and
u8 using Eqs.~8! and ~9b!. Once Da has been computed, th
coordinates ofC[(a,b) can be obtained from the following
equations

~a21b2!5~xi2a!21~yi2b!2, sin~Da/2!5
r

2~a21b2!
(14)

sinceC is equidistant from both coordinates (xi ,yi) and (0,0).
Having solved fora andb one can verify the value ofu8 obtained
earlier with that obtained from the relation (tanu82u8)5a21b2,
derived from Fig. 2. From the coordinates ofC, we computea i
from the relation

tana i5~yi2b!/~xi2a! (15)

The value ofa i is useful for computing the direction of rolling fo
the path segment~2!-~3!. The distance of rolling depends on th
value ofu8, which is known. The remaining manuevers are co
prised of motion of the sphere along:i! circular arc~3!-~4! under
control action~B! that subtends angleDa at the center of rotation
C, and ii ! straight line ~4!-~5! inclined at anglea f5(a i1Da)
with respect to thex axis, under control action~A! for a net
rotation
of u8.

We conclude this section with a few remarks. Simulation res
presented in Section 5 will provide a better understanding of
algorithm, and the steps involved.

1. The results in Fig. 4 indicate that theDb-Da curves are
sharper for smaller values ofr. This implies that small errors
in the numerical computation ofDa ~from a given value of
Db) will result in large errors inDb at the end of the ma-
neuver, for small values ofr. This problem can be trivially
eliminated by rolling the sphere farther away from the orig
of the Cartesian coordinate frame, at the initial point of tim
506 Õ Vol. 124, DECEMBER 2002
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2. The graphs in Fig. 4 indicate thatDb does not assume val
ues in the range@0, 2p# for Da in the same range, for al
values ofr. This does not pose problems sinceDb continu-
ously assumes values over a range greater than 2p for dif-
ferent values ofr. For r 55 and a counter-clockwise path
for example, we can use a value ofDa ~approximatelyp/3)
that will result inDb522p, equivalent toDb50 ~a value
than cannot be directly achieved with any value ofDa).

3. The algorithm by Li and Canny@7# requires one trivial and
two non-trivial maneuvers for reconfiguration of the sphe
The first non-trivial maneuver is an equatorial spherical
angle maneuver that converges two of the three orienta
coordinates of the sphere. The second non-trivial maneu
is based on a polhode trajectory that converges the t
orientation coordinate. In comparison, our algorithm r
quires one trivial maneuver based on control action~A! and
one non-trivial maneuver based on the~A!-~B!-~A! sequence
of control actions. Clearly, the sphere is reconfigured
fewer number of steps using our algorithm.

4. It is clear from our algorithm that the sphere can be co
pletely reconfigured ifx, y, u can be converged to zero, an
b can be converged to an arbitrary value in@0, 2p#. Since
the change inb, Db, is implicitly a function of the change
in a, Da, for all values ofr, and hypothetically there exist
Da values for all values ofDb effectively in @0, 2p#, the
controllability of the sphere can be studied from the reduc
set of kinematic relations in Eq.~2!, namely

S ẋ

ẏ

u̇

ȧ
D5S sina

2cosa

0

cot u
D vx

11S cosa

sina

1

0
Dvy

1 (16)

Specifically, by constructing the distribution comprised of t
control vectors above, and their iterated Lie brackets, as follo
Fig. 5 Basis for complete reconfiguration of the sphere
Transactions of the ASME
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and showing that it has full rank, one can claim complete cont
lability. This eliminates the need for using the five-state kinema
model and defining two separate charts of the atlas covering
sphere for the proof of controlability@7#.

5. The algorithm by Jurdjevic provides optimal trajectories b
require numerical computation of elliptic functions and int
grals. During implementation, the elliptic functions and i
tegrals will have to be computed at every step to determ
the instantaneous direction of rolling of the sphere. In co
parison, our algorithm provides reconfiguration using a c
cular arc and straight line segments, whose parameters
to be computed only once. Clearly, our algorithm requi
significantly less computation than the algorithm by Ju
jevic @8#. Also, due to the complex nature of the optim
trajectories, the error in the final configuration of the sph
is likely to be smaller for our algorithm.

6. Although the motion planning problem provides reconfig
ration trajectories that can be tracked using a tracking c
troller, the more desirable approach to reconfiguration
through the design of a stabilizing controller. The approa
by Li and Canny will not lend itself well to the design of
stabilizing controller since it relies on equatorial spheric
triangle maneuvers. The same can be said about the opt
trajectories of Jurdjevic since optimal control formulatio
for nonlinear systems generally do not result in feedba
control strategies. In comparison, our motion planning al
rithm lends itself very well to the design of a stabilizin
controller. Using our algorithm as a basis, we have succ
fully developed a feedback control strategy and have ther
resolved an important problem that has eluded many
searchers till date. The feedback control strategy will be p
sented in our next paper.

4 Motion Planning Using Spherical Triangles

4.1 Effect of Rolling Along a Spherical Triangle. In this
section, we present our second algorithm for complete reconfi
ration of the sphere. This algorithm requires the contact po
between the sphere and the ground to trace a triangle on the
face of the sphere. Since a spherical triangle is a closed path
sphere undergoes a net rotation about the vertical axis at the
of the maneuver. The sphere also translates since the image o
spherical triangle on the ground is not a closed path. In this s
tion, we obtain expressions for the net translation and rotatio

Fig. 6 „a… A spherical triangle, „b… Image of the spherical tri-
angle on the x -y plane
Journal of Dynamic Systems, Measurement, and Control
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terms of dimensions of the spherical triangle. These express
will be used to solve the reconfiguration problem.

Consider the spherical triangleLMN, inscribed on the surface
of the unit sphere, as shown in Fig. 6~a!. The length of the sides o
the triangle, which are arcs of great circles, area, b, andc. The
angles opposite to these sides areA, B, andC, respectively. Let the
sphere initially be at the origin of thexy coordinate frame, shown
in Fig. 6~b!. At this location, let the sphere be oriented such th
its point of contact with the ground isM and the image ofMN is
the line oriented at anglec counter-clockwise with the negativey
axis. Since the spherical triangle can be arbitrarily inscribed
the surface of the sphere, the initial direction of roll,c, is arbi-
trary. Starting at pointM, the sphere is rolled along this directio
by distancea whereby the contact point changes toN. The sphere
then rolls distanceb after a left turn of angleC with the previous
direction of travel. This brings the contact point on the sphere
L. Finally, the sphere rolls distancec after a left turn of angleA.
This returns the contact point on the sphere toM. The final posi-
tion of the sphere in thexy plane is shown in Fig. 6~b!. Here,d
andf represent the distance and direction of translation, resp
tively. The direction is measured counter-clockwise with resp
to the positivex axis. Using planar trigonometry, we can expressd
andf by the relations

d25a21b21c212ac cos~A1C!22ab cosC22bc cosA
(17)

f5c1arctanFa2b cosC1c cos~A1C!

c sin~A1C!2b sinC G (18)

Now, let i, j, k denote unit vectors along the inertially fixed coo
dinate axesx, y, z, respectively, and leti 8, j 8, k8 denote orthogonal
unit vectors that are fixed to the sphere. Assume that the
vector triads are coincident before the spherical triangle man
ver. Since rolling along a spherical triangle is equivalent to a p
rotation about thez axis, the unit vector triads at the end of th
maneuver will be related by the expression

S i 8

j 8

k8
D 5S cosa sin a 0

2sin a cosa 0

0 0 1D S i

j

k
D (19)

wherea is the amount of rotation about the positivez axis. To
obtain an expression fora, we recall the general expression fo
rotation of a vectorr about axisl by angleg, to form r 8

r 85~12cosg!~ l . r ! l 1cosg r 1sin g ~ l 3 r ! (20)

Knowing that the spherical triangle maneuver is comprised
three consecutive rotations, with: i! l 5 i , g5a; ii ! l 5@2cos
Ci1sinCj#, g5b, and iii! l 5@cos(A1C)i2sin(A1C)j#, g5c,
the composite rotation matrix can be computed. After tedious s
plification using spherical trigonometric identities@13#, the entries
of the rotation matrix can be shown@12# to be identical to the
entries of the matrix in Eq.~19!, with

a5p2~A1B1C!<0 (21a)

The path taken by the sphere in Fig. 6~b! can be considered a
left-handed since left turns were taken atN and L. For a right-
handed path,a takes the form@12#
DECEMBER 2002, Vol. 124 Õ 507
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Fig. 7 Open loop reconfiguration using spherical triangles
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a5~A1B1C!2p>0 (21b)

Using the spherical trigonometric relation@13# for the area of a
spherical triangle, we can establish from Eq.~21! that the net
rotation of a sphere tracing a triangle on its surface is equal to
solid angle subtended by the triangle. The same result is state
the Gauss-Bonet theorem of parallel transport@1#. In summary,
when a sphere rolls along a spherical triangle, the final locatio
the sphere can be computed using Eqs.~17! and ~18!; the net
rotation of the sphere is about the vertical axis and can be c
puted using Eq.~21a! or ~21b!, depending upon whether the pa
is left-handed or right-handed, respectively.

4.2 Complete Reconfiguration Strategy. In this section we
formulate an open loop strategy for completely reconfiguring
sphere. In reference to Fig. 7, this constitutes positioning
sphere at the origin of thexy frame, locatingP ~an arbitrary point
on the sphere! at the top of the sphere, and orientingR ~a fixed
point on the equatorial circle, defined relative toP) in some de-
sired direction on the horizontal plane. At the initial configuratio
marked 1 in Fig. 7, pointP is arbitrarily located atP(1), andR is
located on the equatorial circle relative toP, atR(1). Ourstrategy
consists of three steps. First, the sphere rolls from the initial c
figuration to the origin of thexy frame, denoted by the straigh
line path 1→2 in Fig. 7. At this time,P is located at an arbitrary
point on the sphere,P(2), andR is located atR(2). Second, the
sphere rolls away from the origin to bringP directly to the top,
P(3). This is depicted by the straight line trajectory 2→3. At this
configuration,R, depicted byR(3), is located on the horizonta
diametrical plane at some arbitrary orientation. Finally, the sph
executes a spherical triangle maneuver 3→4→5→6 such that it
translates back to the origin of thexy frame and its net rotation
about the vertical axis pointsR in the desired direction. In confor
mity with Fig. 6, the initial direction of rolling for the spherica
triangle maneuver is chosen along the line orientedc counter-
clockwise with respect to the negativey axis.

The first two steps of our algorithm are trivial to implemen
The last step requires that we solve for a spherical triangle wh
sides and angles satisfy Eqs.~17!, ~18!, and ~21a! or ~21b!, for
given values ofd, f, anda. The value ofc is assigned suitably
to satisfy Eq.~18!, which may not be satisfied otherwise.

4.3 Existense of a Solution. In this section, we show that i
is possible to arbitrarily reconfigure the sphere using one or
most two spherical triangle maneuvers. Since an arbitrary valu
f can be achieved through a proper choice ofc, we only need to
show that any value ofd and a, 0<d<p, 0<a<p, can be
Vol. 124, DECEMBER 2002
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achieved with one or two spherical triangle maneuvers. The
main of d is @0,p# since the unit sphere rolls no more thanp in
the second step of our algorithm. The domain ofa is defined over
@0,p# and not @2p,p# since negative values ofa can be
achieved using left-handed paths.

To prove existence of a solution, we look at the possible se
d anda values that can be achieved with feasible triangle para
eters, namely 0<a,b,C<p. For every set ofa, b, and C, we
determineA, B, andc using the spherical trigonometric identitie
@13#

A2B52arctanS sin@~a2b!/2#

sin@~a1b!/2# tanC/2D
A1B52arctanS cos@~a2b!/2#

cos@~a1b!/2# tanC/2D (22)

c52arctanS tan@~a1b!/2# cos@~A1B!/2#

cos@~A2B!/2# D
All values are then substituted in Eqs.~17!, ~18!, and ~21b! to
numerically computed anda. These set values are shown by th
gray area in the first quadrant in Fig. 8. Clearly, not all values
d and a, 0<d,a<p, can be achieved with a single spheric

Fig. 8 Reachable space of d -a
Transactions of the ASME
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Fig. 9 Reconfiguration of the sphere using the geometric motion planner
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triangle maneuver. However, we assert that an arbitraryd and a
can be achieved with at most two triangle maneuvers.

To prove our assertion, we first realize thatf can be arbitrary
sincec is arbitrary, and in particular, can vary by 180° for th
same value ofd. This implies that for every achievabled in @0,p#,
we can effectively achieve2d in @2p,0#. This, in addition to the
fact that right- and left-handed paths result in opposing signs oa,
suggests that we expand the set of achievabled and a, 2p
<d,a<p, as shown in Fig. 8. Now consider the straight lines
2, 3, and 4 in Fig. 8, which are conservative estimates of
reachable space ofd-a. We translate lines 2 and 3 along line 1
generate the rectangleABCD. It can be argued that any poin
inside ABCD can be reached by first moving along line 1 a
then along a line parallel to line 2 or 3, by appropriate distanc
Since the rectangular area contains the entire region 0<d,a
<p, it can be argued that the sphere can be arbitrarily recon
ured using at most two spherical triangle maneuvers in the t
step of our algorithm.

We conclude this section by summarizing the merits of o
algorithm. Our algorithm, based on spherical triangle maneuv
is similar to the second step of the algorithm proposed by Li a
Canny@7#. It is however more general since it is not restricted
the use of equatorial spherical triangles. As a direct conseque
it eliminates the need for the third step in Li and Canny’s alg
rithm @7#. In comparison to the algorithm by Jurdjevic, where t
trajectories are defined in terms of elliptic functions and integr
trajectories designed by our algorithm are comprised only
straight line segments. This provides the scope for much ea
implementation.
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5 Simulation Results

5.1 Geometric Motion Planner. We simulate a reconfigu-
ration maneuver of an unit sphere radius based on the geom
motion planner presented in Section 3. In accordance with
~10a!, the initial configuration of the sphere is assumed to be

~x0 ,y0 ,a0 ,u0 ,f0![~5,5,260°,45°,230°! (23a)

where the units are in meters and degrees, repectively. The
configuration, defined by Eq.~10b!, is chosen to satisfy

x50, y50, u50°, a1f50° (23b)

The final configuration may give the false impression that we
addressing a problem of reconfiguration to an equilibrium ma
fold. From our discussion in Section 3.3, however, we know t
Eq. ~23b! represents a unique configuration of the sphere.

The simulation results are shown in Fig. 9. The position a
orientation of the sphere is depicted by pointsP, Q, andR. HereQ
denotes the sphere center, and pointsP andR lie at the intersec-
tion of the sphere with the positivez2 andx3 axes, respectively, in
accordance with our discussion in Section 2. At the initial co
figuration, inset in Fig. 9, the three points are located atP(1),
Q(1), andR(1), respectively. In the first step of our algorithm
they move to locationsP(2), Q(2), andR(2), under action~A!.
At this configuration,P(2) is vertically aboveQ(2) whosex and
y coordinates can be obtained using Eq.~11!

xi5~x02u0 cosa0!54.61, yi5~y02u0 sin a0!55.68
(24)
DECEMBER 2002, Vol. 124 Õ 509
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Also, R(2) is located on the equatorial circle at an angle
290° with respect to thex axis. The orientation ofR(2) can be
verified from Eq.~12!

b i5~a01f0!5260°230°5290° (25)

The reconfiguration problem now requires execution of the~A!-
~B!-~A! sequence of control actions that will translate the sph
by distancer, and rotate it about the vertical by angleDb. The
magnitude ofr andDb can be computed from Eq.~13! as

r 5~xi
21yi

2!1/257.07, Db5~b f2b i !590° (26)

We choose a counter-clockwise path for the sphere under the~A!-
~B!-~A! sequence of control actions. However, since there ex
no solution forDa ~refer to Fig. 4! when Db5p/2 rad andr
57.07, we changeDb to 23.5p rad by subtracting 4p rad from
its actual value. This value ofDb yields from Eqs.~8! and ~9b!

Da52.56 rad5146.7°, u851.38 rad579.1° (27)

The computed value ofDa in Eq. ~27!, which can be verified
from Fig. 4, along withxi and yi values in Eq.~24! yields the
coordinates of the center of rotation from Eq.~14!

a53.15, b52.15 (28)

The values ofxi , yi , a and b in Eqs. ~24! and ~28! yields a i
567.5° from Eq.~15!.

The motion of the sphere under the~A!-~B!-~A! sequence of
control actions is now defined completely. First, the sphere rolls
the directiona i567.5° by u8579.1°. This brings pointsP, Q,
andR to the locationsP(3), Q(3), andR(3), respectively. Next,
with (a,b)[(3.15,2.15) as the center of rotation, the sphe
moves along a circular path for a net angular displacemen
Da5146.7°. At the end of this motion, the three points are
cated atP(4), Q(4), andR(4), respectively. Finally, the sphere
rolls to the origin of thex-y coordinate frame. This completes th
reconfiguration which is evident from the coordinatesP(5),
Q(5), andR(5) in Fig. 9.

5.2 Spherical Trigonometric Motion Planner. The
spherical trigonometric motion planner, which was presented
Section 4, is comprised of three steps. However, since the first
steps are trivial, we simulate only the third step.

The initial and final configurations for the third step are chos
such that

d51.8, f556.31°, a5290° (29)

Fig. 10 A spherical triangle maneuver for reconfiguration
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This implies that ifP is the top most point on the sphere andR is
on the equatorial circle in the direction of thex axis at the initial
point of time,P should be again at the top in the final configur
tion, andR should be on the equatorial circle in the direction
the negativey axis. If we denote the center of the sphere byQ, the
coordinates ofQ at the initial time can be computed from th
values ofd andf asQ5(21.0,21.5). We choose a left-hande
path sincea is negative and numerically compute the triang
parameters using Eqs.~17!, ~18!, ~21a!, and~22!. Using a value of
66.31° forc ~the value ofc can be chosen arbitrarily; we chose
based on the value off) in Eq. ~18!, the spherical triangle param
eters were obtained numerically

a51.862, b51.198, c51.760, A5103.81°,

B570.78°, C595.41° (30)

where the units of the angles are degrees, and that of the side
meters or radians since the sphere has a unit radius. The tria
parameters and the anglec are used to depict the motion of th
sphere in Fig. 10. In conformity with our discussion in Secti
4.2, the configuration of the sphere at the start of the spher
triangle maneuver is depicted by pointsP(3), Q(3), andR(3).
At the end of the maneuver, the configuration is depicted by po
P(6), Q(6), and R(6). Indeed, in the final configuration the
sphere is at the origin, pointP is at the top, and pointR is on the
equatorial circle in the direction of the negativey axis.

6 Conclusion
We presented two open-loop control strategies for reconfigu

tion of the rolling sphere. The reconfiguration problem, whi
refers to the task of converging the sphere to an arbitrary posi
with an arbitrary orientation, is challenging since the kinema
model of the sphere cannot be reduced to chained form; this
ders all regimented nonholonomic motion planning algorithms
applicable. Using Euler angle coordinates for description
sphere orientation and choosing the final orientation to lie at
singularity of the description, the first control strategy provide
simple and effective solution. It also simplifies the reachabil
problem, which can be ascertained from a reduced-order sys
The algorithm invokes alternating inputs for reconfiguration a
the resulting solution trajectories are comprised of simple circu
arcs and straight line segments. Our second control strateg
conceptually simpler and results in trajectories comprised
straight line segments only. Based on the Gauss-Bonet theore
parallel transport, our second algorithm achieves reconfigura
using spherical triangle maneuvers, and by not restricting
choice to equatorial triangles, provides a generalization of
approach by Li and Canny@7#. As compared to the algorithm by
Jurdjevic@8#, which requires elliptic functions and integrals to b
computed at every step, both our algorithms are simpler, com
tationally efficient, and easier to implement. Our first algorith
additionally provides the scope for design of feedback con
strategies. The algorithms by Li and Canny@7# and Jurdjevic@8#
do not lend themselves well to this important problem.
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