Introduction to
 MATLAB

MATrix LABoratory =MATLAB

- MATLAB is a program for doing numerical computation. It was originally designed for solving linear algebra type problems using matrices. It's name is derived from MATrix LABoratory.
- MATLAB has since been expanded and now has built-in functions for solving problems requiring data analysis, signal processing, optimization, and several other types of scientific computations. It also contains functions for 2-D and 3-D graphics and animation.

MATLAB

- The MATLAB environment is command oriented somewhat like UNIX. A prompt appears on the screen and a MATLAB statement can be entered. When the <ENTER> key is pressed, the statement is executed, and another prompt appears.
- If a statement is terminated with a semicolon (;), no results will be displayed. Otherwise results will appear before the next prompt.
- The following slide is the text from a MATLAB screen.

MATLAB

To get started, type one of these commands: helpwin, helpdesk, or demo
» $a=5$;
» $b=a / 2$
$b=$
2.5000
>>

MATLAB Variable Names

- Variable names ARE case sensitive
- Variable names can contain up to 63 characters (as of MATLAB 6.5 and newer)
- Variable names must start with a letter followed by letters, digits, and underscores.

MATLAB Special Variables

ans Default variable name for results
pi Value of π
eps
inf
NaN
i and j
Smallest incremental number
Infinity
realmin The smallest usable positive real number
realmax The largest usable positive real number

MATLAB Math \& Assignment Operators

Other MATLAB symbols

\gg	prompt
\ldots	continue statement on next line
,	separate statements and data
$\%$	start comment which ends at end of line
$;$	(1) suppress output (2) used as a row separator in a matrix
$:$	specify range

MATLAB Matrices

- MATLAB treats all variables as matrices. For our purposes a matrix can be thought of as an array, in fact, that is how it is stored.
- Vectors are special forms of matrices and contain only one row OR one column.
- Scalars are matrices with only one row AND one column

MATLAB Matrices

- A matrix with only one row AND one column is a scalar. A scalar can be created in MATLAB as follows:
» a_value=23
a_value =

23

MATLAB Matrices

- A matrix with only one row is called a row vector. A row vector can be created in MATLAB as follows (note the commas):
» rowvec $=[12,14,63]$
rowvec $=$
$12 \quad 14 \quad 63$

MATLAB Matrices

- A matrix with only one column is called a column vector. A column vector can be created in MATLAB as follows (note the semicolons):
» colvec $=[13 ; 45 ;-2]$
colvec $=$

13
45
-2

MATLAB Matrices

- A matrix can be created in MATLAB as follows (note the commas AND semicolons):

$$
\text { » matrix }=[1,2,3 ; 4,5,6 ; 7,8,9]
$$

matrix $=$

```
1 2 3
4 5 6
7 8 9
```


Extracting a Sub-Matrix

- A portion of a matrix can be extracted and stored in a smaller matrix by specifying the names of both matrices and the rows and columns to extract. The syntax is:
sub_matrix = matrix (r1: r2 , c1:c2) ;
where $r 1$ and $r 2$ specify the beginning and ending rows and c 1 and c2 specify the beginning and ending columns to be extracted to make the new matrix.

MATLAB Matrices

A column vector can be extracted from a matrix. As an example we create a matrix below:	- Here we extract column 2 of the matrix and make a column vector:
» matrix=[1,2,3;4,5,6;7,8,9]	» col_two=matrix(: , 2)
matrix $=$	col_two =
123	
$4 \quad 56$	2
$7 \quad 89$	5
	8

MATLAB Matrices

- A row vector can be extracted from a matrix. As an example we create a matrix below:
» matrix $=[1,2,3 ; 4,5,6 ; 7,8,9]$
matrix $=$

123
$4 \quad 5 \quad 6$
$\begin{array}{lll}7 & 8 & 9\end{array}$

- Here we extract row 2 of the matrix and make a row vector. Note that the $2: 2$ specifies the second row and the $1: 3$ specifies which columns of the row.
» rowvec=matrix(2:2,1:3)
rowvec $=$

$$
4 \quad 5 \quad 6
$$

Reading Data from files

- MATLAB supports reading an entire file and creating a matrix of the data with one statement.
>> load mydata.dat;
\% loads file into matrix.
\% The matrix may be a scalar, a vector, or a
\% matrix with multiple rows and columns. The
\% matrix will be named mydata.
>> size (mydata)
>> length (myvector)
\% size will return the number
$\%$ of rows and number of
\% columns in the matrix
\% length will return the total
\% no. of elements in myvector

Plotting with MATLAB

- MATLAB will plot one vector vs. another. The first one will be treated as the abscissa (or x) vector and the second as the ordinate (or y) vector. The vectors have to be the same length.
- MATLAB will also plot a vector vs. its own index. The index will be treated as the abscissa vector. Given a vector "time" and a vector "dist" we could say:
>> plot (time, dist) \% plotting versus time
>> plot (dist) \% plotting versus index

Plotting with MATLAB

- There are commands in MATLAB to "annotate" a plot to put on axis labels, titles, and legends. For example:
>> \% To put a label on the axes we would use:
>> xlabel ('X-axis label')
>> ylabel ('Y-axis label')
>> \% To put a title on the plot, we would use:
>> title ('Title of my plot')

Plotting with MATLAB

- Vectors may be extracted from matrices. Normally, we wish to plot one column vs. another. If we have a matrix "mydata" with two columns, we can obtain the columns as a vectors with the assignments as follows:
>> first_vector = mydata ($:, 1$) ;
>> second_vector = mydata ($:, 2$) ;
\% First column
\% Second one
>> \% and we can plot the data
>> plot (first_vector , second_vector)

Some Useful MATLAB commands

- who List known variables
- whos List known variables plus their size
- help >> help sqrt Help on using sqrt
- lookfor >> lookfor sqrt Search for keyword sqrt in m-files
- what >> what a: List MATLAB files in a:
- clear Clear all variables from work space
- clear x y Clear variables x and y from work space
- clc Clear the command window

Some Useful MATLAB commands

- what
- dir
- ls
- type test
- delete test
- cd a:
- chdir a:
- pwd
- which test

List all m-files in current directory
List all files in current directory
Same as dir
Display test.m in command window
Delete test.m
Change directory to a:
Same as cd
Show current directory
Display directory path to 'closest’ test.m

A Useless, But Interesting, MATLAB command

- why

In case you ever needed a reason

MATLAB Relational Operators

- MATLAB supports six relational operators.
Less Than
Less Than or Equal

Greater Than
Greater Than or Equal
Equal To
Not Equal To
$<$
$<=$
$>$
>=
=
~=

MATLAB Logical Operators

■ MATLAB supports three logical operators.

not	\sim	\% highest precedence	
and	$\& \&$	\% equal precedence with or	
or	$\\|$	\% equal precedence with and	

MATLAB Logical Functions

- MATLAB also supports some logical functions.
xor (exclusive or) Ex: xor (a, b)
Where a and b are logical expressions. The xor operator evaluates to true if and only if one expression is true and the other is false. True is returned as 1 , false as 0 .
any (x)
all (x)
isnan (x) returns 1 at each NaN in x
isinf (x) returns 1 at each infinity in x
finite (x) returns 1 at each finite value in x

Matlab Selection Structures

- An if - elseif - else structure in MATLAB. Note that elseif is one word.
if expression1 $\%$ is true
\% execute these commands
elseif expression2 \% is true
\% execute these commands
else
\% the default
\% execute these commands
end

MATLAB Repetition Structures

- A for loop in MATLAB
for $\mathrm{x}=$ array for ind = 1:100
b(ind) $=\sin ($ ind $/ 10)$ end
Alternative:
$\mathrm{x}=0.1: 0.1: 10 ; \mathrm{b}=\sin (\mathrm{x})$; - Most of the loops can be avoided!!!
- A while loop in MATLAB while expression while $\mathbf{x}<=\mathbf{1 0}$
\% execute these commands end

Scalar - Matrix Addition

```
" a=3;
>b=[1, 2, 3;4, 5, 6]
b}
    1 2 3
    4 5
> c= b+a % Add a to each element of b
c}
    4 5 6
    7 8 9
```


Scalar - Matrix Subtraction

$$
\begin{aligned}
& » \mathrm{a}=3 ; \\
& » \mathrm{~b}=[1,2,3 ; 4,5,6] \\
& \mathrm{b}= \\
& \begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
& \text { » }=\mathrm{b}-\mathrm{a} \text { \%Subtract a from each element of } \mathrm{b} \\
\mathrm{c}= \\
\\
-2 & -1 & 0 \\
1 & 2 & 3
\end{array}
\end{aligned}
$$

Scalar - Matrix Multiplication

```
» a=3;
» b=[1, 2, 3; 4, 5, 6]
b}
    1 2 3
    4 5 6
>c = a * b % Multiply each element of b by a
c =
    3 6
    12 15 18
```


Scalar - Matrix Division

$$
\begin{aligned}
& \text { » } \mathrm{a}=3 ; \\
& \text { » } \mathrm{b}=[1,2,3 ; 4,5,6] \\
& \mathrm{b}= \\
& \begin{array}{rrr}
1 & 2 & 3 \\
4 & 5 & 6
\end{array} \\
& \text { » c = b / a } \\
& \mathrm{c}= \\
& \begin{array}{lll}
0.3333 & 0.6667 & 1.0000 \\
1.3333 & 1.6667 & 2.0000
\end{array}
\end{aligned}
$$

