
203484 selected topic in
transportationtransportation

2552/2

Introduction to Matlab 2

1

Prepared by Weerakaset Suanpaga

O iOverview

Topic No#1

2

Matlab (Matrix Laboratory)
3/04/2008

W i i E i fil h di i i• Writing a program: Environment, m files, path, editor, writing
programs, subroutines

• Variable types – arrays, stringsyp y , g
• Basic operations: if/elseif/else, switch, for
• Input / Output
• Plotting
• Debugging
• Speed• Speed

3

Matlab: What is it + Why Use It?

• What is it?
– Easy to use programming language for mathematically oriented

programsprograms
– Great for numerical computing, bad for web design

• Why use it?y
– Matlab is often slow, not very elegant, not universally available,

not free (although Octave is a freeware version), but …
V i (d d l i– Very easy to write programs (good development environment,
simple data structures and syntax, nice graphics), very large
libraries of numerical routines (including specialized toolboxes
for differential equations, bioinformatics, finance, etc)

– Very popular in University classes and industry

4

Writing Programs

• Environment
– Command line input (quick way to test syntax, etc.)
– All variables stay in memory for access (but this can be confusing if you

don’t clear them). Begin main program by clearing variables with
• clear; clear global;

• M-files: Put each program, subroutine in its own file, *.m. All m-files
begin with the lines
– Main program: nothing, just type commands
– Subroutines: function [outvar1,outvar2,…]=Func_Name(invar1,invar2,…)
– Name the m-file for Func Name with Func Name.m_ _

• Path: Put all m-files in one directory and add it to your path (file/set
path). Also set “Current Directory” (in toolbar at top of Matlab window)
to that directory.to that directory.

• Editor: file/open or file/new allows you to use the Matlab editor to
make m-files (I recommend this for its formatting features).

5

Variables
• The basic variable in Matlab is an array
• “a=7;” creates a 1x1 array (scalar)

“ [1 2 3 4 5 6] ” t 2 3
1 2 3⎡ ⎤
⎢ ⎥• “a=[1,2,3;4,5,6];” creates a 2x3 array

• “a=‘array’;” creates a 1x5 array of characters
• a(i,j) refers to element in row i of column j of matrix a

4 5 6⎢ ⎥
⎣ ⎦

(,j) j
• There are many array operations, e.g., diag(a) will diagonalize a.
• Structures are very convenient to store related variables

‘ i t t ’ i 2– s.name=‘s is a structure’; s.size=2;
• The “:” operator gives sets of variables

– >> 1:3 is 1 2 3
– >> 10:-1:5 is 10 9 8 7 6 5
– >> a(1:3;j) is a(1,j) a(2,j) a(3,j)

• Many things are vectorized and can work with matrix input vectors x,ya y gs a e ec o ed a d ca o a pu ec o s ,y
– plot(x,y);
– y=2*x;

dot prod = x*y’;

6

– dot_prod = x y ;
– Pointwise_prod = x.*y;

Basic Flow Control

if, elseif, else switch for

if A > B
s=‘A greater‘;

elseif A < B

switch (int(A-B))
case -1

s=‘A less‘;

for i=1:5
sum=sum+i;

end
s=‘A less'

elseif A == B
s=‘A,B equal'

l

case 0
s=‘A,B equal'

case 1
‘A t 'else

s='Unexpected situation‘
end

s=‘A greater'
otherwise

s='Unexpected situation‘
endend

7

Input and Output (I/O)
• Write to screen

– disp([‘Variable x has value: ‘ num2str(x)]);
– x (with no “;” will print x)

• Write to file
Special Matlab routines (e g csvwrite(‘matrix txt’ M))– Special Matlab routines (e.g., csvwrite(matrix.txt ,M))

– Open file: fid=fopen(‘file.txt’,w);
– Write to file: fprintf(fid,'%f\n',x); (c style formatting)
– Close file: fclose(fid); (must do this to have it write)

• Read from file
Special Matlab routines (e g M = csvread('filename'))– Special Matlab routines (e.g., M = csvread(filename))

– C style: a = fscanf(fid,'%g %g',[m n]); returns mxn matrix a of data. %
Vectorized function
Si l d fi i f ti f i t l I I itD t t– Simple defining function for input values: In InitData.m type

Function [indata]=InitData;
indata.a=10; Indata.b=50;

8

Plotting
• Make plot

– Very extensive graphics, 2D, 3D, contour, movies, etc.
Si l l t l t 2 d d t i bl d (ith– Simple example to plot a 2 dependent variables and compare (with
labels)

% Set up data
t=(1:.1:10);
cos_vals=cos(t); % Vectorized function
sin_vals=sin(t);
% Plot data
hold on; % Keeps plot from overwriting
title_text=({['Cos and Sin Functions', 'date= ' date]});
title(title_text);
xlabel('Time');
ylabel('Functions');
plot(t,cos_vals,'b:');
plot(t,sin_vals,'r-');
hold off;

9

Debugging

• Great simple graphical debugger when using Matlab
editor
C t b k i t (h d t ti)• Can set breakpoints (where code stops execution)

• All variables are available in workspace at that time to
examineexamine

• Can step one line at a time, into routines, or continue
until next breakpointuntil next breakpoint

10

Speed

• Easy html output profiling with profile
> profile on> profile on
> my_really_slow_code
> profile viewer
> profile off

• Timing given for each routine, easy to search through
them by following linksthem by following links

• Matlab can be very slow
– For loops are very slow (vectorizing can give x1000 speedup!!)p y (g g p p)
– Vectorized operations are fast
– Basic built in routines (e.g., matrix diagonalization) are fast (they

are just C routinesare just C routines
– Can call C,C++ functions for better speed

11

Functions (Toolboxes)
• Many built in functions that are

easy to use
• MATLAB Toolboxes

– Bioinformatics Toolbox
Communications Toolbox
Control System Toolbox
Curve Fitting Toolbox– Transpose of M: M’

– Eigenvalues of M: diag(M)
– Symbolic equation solutions:

l (' * ^2 b* 0' ' ')

Curve Fitting Toolbox
Data Acquisition Toolbox
Database Toolbox
Datafeed Toolbox
Excel Link
Filter Design Toolbox
Filter Design HDL Coder
Financial Toolbox
Financial Derivatives Toolboxsolve('a*x^2+b*x+c=0','x')

ans =

Financial Derivatives Toolbox
Financial Time Series Toolbox
Fixed-Income Toolbox
Fixed-Point Toolbox
Fuzzy Logic Toolbox
GARCH Toolbox
Genetic Algorithm and Direct Search Toolbox
Image Acquisition Toolbox
I P i T lb

1/2/a*(-b+(b^2-4*a*c)^(1/2))
1/2/a*(-b-(b^2-4*a*c)^(1/2))

Etc

Image Processing Toolbox
Instrument Control Toolbox
Mapping Toolbox
Model-Based Calibration Toolbox
Model Predictive Control Toolbox
Neural Network Toolbox
Optimization Toolbox
OPC Toolbox– Etc.

• If you are doing any numerical
task, from an integral to a
permutation to a neural

Partial Differential Equation (PDE) Toolbox
RF Toolbox
Robust Control Toolbox
Signal Processing Toolbox
Spline Toolbox
Statistics Toolbox
Symbolic Math Toolbox
System Identification Toolboxpe utat o to a eu a

network, there is probably a
built in function.

y
Virtual Reality Toolbox
Wavelet Toolbox

• Also Simulink

12

Miscellaneous

• Comment lines begin with “%”
• Almost all command lines end with “;”
• Help

– “>> help FUN” gives help on function FUN.
“>> help help” gi es info on help– “>> help help” gives info on help.

– Huge amount online at www.mathwork.com and all over web.

• Everything can be tested on the command line• Everything can be tested on the command line
• Begin programs with “clear; clear global;” to erase

variables.variables.

13

D fi i f ti th fi t liDefining a function – the first line

function <outputVars> = <function name>(<inputVars>)

0, 1, or more vars. If
more than 1, put in
square brackets

0, 1, or more vars. If 0,
then the enclosing parens
are not needed.

square brackets.

You choose the name - see text or

required

Keyword - has to be
exactly as appears

You choose the name see text or
ML help for valid name - mostly
just start with a regular
character and have no spaces.exactly as appears

14

Linkage Between Actual and FormalLinkage Between Actual and Formal
Parameters

...
calling program:

z = myFun3(a,b)

...
the function called:

function out33 = myFun3(x,y)
When the function myFun3 is “called”…
1. The formal input variables (x,y) take the values given in the

calling line (a b)calling line (a,b)
2. The function “runs”
3. The output variables in the function are given back to the calling

15

program’s variable.

Comments in Functions

• There are no uniformly agreed upon rules for inserting
comments into functionscomments into functions

• It is always good programming practice to include comment
lines indicating:
– the purpose of the function
– the inputs to the function
– the outputs from the functionthe outputs from the function
– any assumptions

16

E lExamples

function <outputVars> = <function name>(<inputVars>)

For each of the following function definitions how manyFor each of the following function definitions, how many
input and output variables are there?
function x = myFun1function x myFun1
function z = myFun2(y)
function out33 = myFun3(x,y)
function [a,b] = myFun4(q,r)

17

Examples

18

Vector Operations

Topic No# 2p

19

Vector Operations

• Vector Creation
• Accessing Vector Elements
• Row Vectors and Column Vectors, and the Transpose

Operator
V t B ilt i F ti O t d E i• Vector Built-in Functions, Operators, and Expressions

20

2-1 Vector Creation

• Vectors are defined in square brackets;
temperaturesMonThu = [32 31 29 33];
temperaturesFriSat = [35 33];

You can concatenate a vector with a scalar;• You can concatenate a vector with a scalar;
temperaturesFriSun = [35 33 27];

• or concatenate 2 vectors;
weeklyTemperatures = [temperaturesMonThu temperaturesFriSun];weeklyTemperatures = [temperaturesMonThu, temperaturesFriSun];

• To find the size of a vector, we use length;
numTemperatures = length(weeklyTemperatures);

• We could find the average temperature by typing;We could find the average temperature by typing;
avgTemperature = mean(dailyTemperatures)

• or by using sum and length;
totalTemperature = sum(dailyTemperatures)/length(dailyTemperatures);

21

Some Useful Vector Functions

• brackets (e.g. [27 36 41]): Creates vectors.

• colon operator (e.g. [0:5:30]): Creates linearly spaced vectors.

• linspace (e.g. linspace(0,100,21)): Creates linearly spaced vectors.p (g p (, ,)) y p

• length (e.g. length([0:5:30])): Finds the length of a vector.

• zeros (e.g. zeros(1,5)): Creates vectors filled with zeroes.

• ones (e.g. ones(1,5): Creates vectors filled with ones.

• sum (e.g. sum([5 3 6 2])): Sums up the contents of a vector.

• sort (e.g. sort([5 3 6 2])): Sorts the contents of a vector.(g ([]))

• mean (e.g. mean([5 3 6 2])): Finds the average of contents.

22

2.2 – Accessing Vector Elements – Examples

1. Create a row vector x consisting of the numbers in the ordered set: {1 4 7 10}
using the colon operator.

x = [1:3:10]

2. Set a variable y to be the length of x.

y = length(x)

3. Set variable y to be the 1st element of x.

(1)y = x(1)

4. Set variable y to be the 1st, 2nd, and 3rd elements of x.

y = x([1 2 3]) OR y = x(1:3)y = x([1,2,3]) OR y = x(1:3)

23

Accessing Vector Elements – Example cont’d.

5. Set variable y to be the 3rd through the last element of x - and do so such that your solution
works no matter how long x is.

y = x(3:end)

6. Set variable y to be the next-to-last and last element of x - and do so such that your solution
works no matter how long x is.

y = x([end-1,end])

7. Change the 2nd element of x to be 3.

(2) 3x(2) = 3

8. Change the 2nd element of x to be 102 and the 4th element of x be 205.

x([2,4]) = [102, 205]([]) []

24

Synopsis for Fetching and Setting Elements in
VectorsVectors

• Access to whole vector is similar to scalar access.
• Accessing element(s) in a vector is done by indexing into the vector.
• To delete element(s) in a vector, empty square brackets are used.
• To find the length of a vector V, use the length built-in function

length(V).
• When setting elements of a vector, the number of elements being set

must be equal to the number of elements in the vector on the right hand
side of the assignment operation. The exception is that a scalar on the
right-hand side can be used to set multiple vector elements.

25

2-3 Row Vectors and Column Vectors, and the Transpose
Operatorp

• Row and column vectors are represented as single rows and
columns of values, respectively.

• When creating a column vector with square brackets, you may g q , y y
use the semicolon operator:

temp = [35; 33; 27];
• or you may use the transpose operator;y y p p ;

temp = [35 33 27]’;
• When creating an equally spaced column vector, you need to

use the transpose operator;use the transpose operator;
springConstants = [10:10:100]’;
springConstants = linspace(10,100,10)’;

26

2-4 Vector Built-in Functions, Operators,
and Expressionsand Expressions

27

Sample Problem – Vector Built-in Functions

28

Sample Problem – Vector Arithmetic Operators

29

Sample Problem – Vector Arithmetic Operators

30

Sample Problem – Vector Arithmetic Operators

31

Vector Relational Operators

• Think of them as comparing numbers…
<, >, = =, >=, <=

• A relational operator can be used to compare the values
of two variables

ba>b
• But… remember MATLAB is for matrices

h i ?what are you testing?

32

Sample Problem – Vector Relational Operators

33

Vector Logical Operators

• They operate on the results of relational operators• They operate on the results of relational operators
• How many elements in vector x are in range (6,10)?
• How many elements in x are

t th 6– … greater than 6
AND

– … less than 10?
W l i l t• We use logical operators…
– AND (&), OR (|), NOT (~)
– any, all

34

Sample Problem – Vector Logical Operators

35

2-D Plotting and Help in MATLAB

Topic No#3p

36

2-D Plotting and Help in MATLAB

• Using EZPLOT to Plot Functions
• Using Vectors to Plot Numerical Data
• Overlay plots and subplots
• Other 2-D plot types in MATLAB
• Problem Sets for 2-D Plotting

37

3-1 Using EZPLOT to Plot Functions

38

Getting Help

• You can’t possibly learn everything there is to know
about MATLAB,

d d ’t d t… and you don’t need to.
• It is crucial to develop the ability to augment your

knowledge in MATLAB toward accomplishing a givenknowledge in MATLAB toward accomplishing a given
task.

39

Getting Help cont’d

40

Getting Help cont’d

• Click the tab in the navigation pane labeled Search.
• Then type into the Search field the name ezplot.

41

Using EZPLOT to Plot Functions

• There are three forms of ezplot:
– f(x) e.g., f(t) = 3e-2tcos(5t)

ezplot('3*exp(-2*t)*cos(5*t)')

– f(t), g(t) e.g., f(t) = 3t2 + 2; g(t) = sin(5t)

ezplot('3*t^2 + 2', 'sin(5*t)')

– f(x,y) = 0 e.g., f(x,y) = 3xy + y2 + 55 = 0

ezplot('3*x*y + y^2 + 55',[-30,30,-20,20])

42

Sample Problem - EZPLOT

43

Graphing with MATLAB

U l t t k i k d di t h t f f ti• Use ezplot to make a quick and dirty chart of functions.
• Optional arguments allow changing the default functional

domain [-2π, 2π].
• Use xlabel, ylabel, and title built-in functions to refine labeling

the plots made by ezplot.
• When needed, use grid to activate a grid on a plot created. , g g p
• If you would like to keep the existing graph and generate a new

one, use figure.

44

3-2 Using Vectors to Plot Numerical Data

Mostly from observed data your goal is to understand the relationship between the• Mostly from observed data - your goal is to understand the relationship between the
variables of a system.

Speed (mi/hr) 20 30 40 50 60 70

• Determine the independent and dependent variables and plot:
speed = 20:10:70;
stopDis = [46 75 128 201 292 385];

Speed (mi/hr) 20 30 40 50 60 70

Stopping Distance (ft) 46 75 128 201 292 385

stopDis = [46,75,128,201,292,385];
plot(speed, stopDis, '-ro') % note the ‘-ro’ switch

• Don’t forget to properly label your graphs:
title('Stopping Distance versus Vehicle Speed', 'FontSize', 14)
xlabel('vehicle speed (mi/hr)', 'FontSize', 12)
ylabel('stopping distance (ft)', 'FontSize', 12)
grid on

45

Sample Problem – Plotting Numerical Data

46

Plotting Functions Numerically

ezplot is a great tool for plotting functions but it has several disadvantages:• ezplot is a great tool for plotting functions, but it has several disadvantages:
– it doesn’t provide as much control as plot, e.g. dotted lines.
– you must fill in values for any constants, e.g.

2
• When you need more control, plot numerically with plot:

d = 4;
h = linspace(1,10); % Step 1 - create vector for independent variable
V = pi*d^2/4*h; % Step 2 – compute vector for dependent variable

hdVcylinder 4

2π
=

V pi d 2/4 h; % Step 2 compute vector for dependent variable
plot(h,V,'-r') % Step 3 - plot and label
xlabel('height (m)', 'FontSize', 12)
ylabel('Volume (m^3)', 'FontSize', 12)
title('Volume of a cylinder versus its height','FontSize', 14)
grid on

47

Sample Problem – Plotting Functions Numerically

A f i G() f h i d d i bl i d fi dA function G(x,y,z) of three independent variables is defined as:

Write a function that takes no inputs or outputs but creates a plot of
G(x,y,z), subject to:

0.1 < x < 4
y = 5, z = 3

48

Synopsis for ezplot and plot

• The first argument to plot should be the vector of values for the• The first argument to plot should be the vector of values for the
independent variable (going on the x-axis); the second argument
should be the vector of values for the dependent variable (going on the
y-axis)y axis).

• An optional third argument plot is the line spec which specifies the type
of line used (solid, dotted, etc.), the color of the line used, and the type
of data marker (if any)of data marker (if any).

• For plotting numerical data from experimentation or observation, use
data markers.
F l tti i l d t th t t d f th ti l• For plotting numerical data that are computed from a mathematical
relationship, data markers must not be used.

49

3-3 Overlay Plots and Subplots

• Allows putting more than one relationship
directly into the same plotting window.

• For multiple dependent variables whose data
are not of the same type, e.g. acceleration,

d d di t• Two key functions: hold and legend speed and distance
• Key function to learn: subplot

50

Sample Problems – Overlay Plots and Subplots

51

Sample Problems – Overlay Plots and Subplots

52

Synopsis for Overlay Plots and Subplots

• Overlay plots are used to show a family of parameterized
results

• hold on is the key MATLAB command needed to turn on
overlays

• Subplots are used to display plots of different independent p p y p p
variables usually from one experimental data set or from one
set of equations for a single physical system.

• subplot is the key MATLAB command needed to identify the p y y
target for a created plot.

53

Web Help

• The total Mathworks doc:

– http://www.mathworks.com/access/helpdesk/help/helpdesk.html

– For matlab specifically:
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.htmlp p p

• Useful tutorials

– Getting started:
http://www.mathworks.com/access/helpdesk/help/techdoc/learn_matlab/learn_m
atlab.html

– A good intro tutorial: Maybe work through this one!
http://www.mathworks.com/academia/student_center/tutorials/launchpad.html

– Links to many more tutorials:
http // math orks com/matlabcentral/link e change/MATLAB/T torials/http://www.mathworks.com/matlabcentral/link_exchange/MATLAB/Tutorials/

54

