Lab Session 7

3D Analysis

Preparation

```
Data set

Extension ArcView.: Select Extension 3D Analyst

\section*{1. 3D Analyst}
- Start ArcView. Select Extension 3D Analyst
- Exercise 1: Creating and populating a 3D scene
\(\diamond\) Open the new 3D scene
\(\diamond\) Add avtutor \(\mid 3\) d \(\mid\) site \(1 \mid\) brklinz.shp avtutor \(13 d \mid\) site \(1 \mid m a s s p n t z . s h p ~\) avtutor 3 3d site1 1 perim.shp
\(\diamond\) Make 3 themes active
\(\diamond\) Go to menu Surface Select Create TIN From Features
\(\diamond\) Look at the default setting of these themes
\(\diamond\) Press OK. Now, there is a TIN theme
\(\diamond\) Add avtutor 3 3d|site 1 bldg.shp
\(\diamond\) Display bldg.shp. Compare with TIN theme
\(\diamond\) Go to View menu and select Create 3d scene and press OK
\(\diamond\) Go to Theme menu and Select 3D properties
\(\diamond\) Select Surface in Assign base height
\(\diamond\) Build expression [stories]*10 in Extrude features
\(\diamond\) Set Extrude feature to Add to \(\boldsymbol{\operatorname { m i n }} \mathbf{z}\) value
\(\diamond\) Examine Navigate tool (left button for navigation, right button for zooming, both of them pressed for panning)
\(\diamond\) Examine Rotate button
\(\diamond\) Use Identify tool to identify the information
\(\diamond\) Examine 3D scene properties (background color, sun azimuth, sun altitude)
- Exercise 2: Creating 3D shapes
\(\diamond\) Open the project tutor3.apr
\(\diamond\) Create 3D points using an attribute representing height
- Make wells.shp active
- Go to Theme menu select Convert to 3D shapefile
- Set the Get Z value to Attribute
- Select Gl_elev field for Z values
- Name the output and press OK
\(\diamond\) Create 3D lines by overlaying features on a surface model
- Make road.shp active
- Go to Theme menu select Convert to 3D shapefile
- Set the Get \(Z\) value to Surface and press OK
- and select Dtm_tin and press OK
- Name the output and press OK
\(\diamond\) Create 3D shape interactively

\section*{Lab Session 7}

\section*{3D Analysis}
- Make Dtm_tin active
- Copy Themes from Edit menu
- Open the new view
- Paste from Edit menu
- Select Interpolate tool and draw some lines in the view
- Select All graphic from Edit menu
- Copy Graphics from Edit menu
- Paste in the previous 3D scene
- Now there are 3D lines
- Exercise 3: Analyzing surfaces
\(\diamond\) Use Identify tool to query information on a surface (TIN or grid)
\(\diamond\) Create slope, aspect themes and contour lines (like Spatial Analyst)
\(\diamond\) Measuring area and volume (created when a virtual flat surface with specified height cut selected surface)
- Make a TIN theme active
- Select Area and Volume Statistics from the Surface menu
- Specify the base height
- Specify whether area and volume above or below the surface
\(\diamond\) Determine cut and fill (how much material is lost or gained by comparing tow surfaces model
- Add two surfaces and make both active
- Select Cut-Fill from the Surface menu
- Specify the before surface
- Specify the cell size
\(\diamond\) Analyzing visibility
- Line of sight
- Add a grid or theme to view
- Select Line of Sight tool
- Specify the offset above the surface of the observer and target
- Move the cursor from the observer to the target location (green means visible and red mean invisible
- Viewshed
- Add a grid or theme to view
- Add a point or a line theme which will be used for observation point
- Make both themes active
- Select Calculate Viewshed option from the Surface menu```

