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A Stochastic Model of Cancer Growth with Immune Response
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A cellular automaton model for the growth of an avascular tumor on a two-dimensional square
lattice is presented. The pattern formation and the growth of the cell population are investigated
by using a Monte Carlo simulation. A microscopic description of the immune system response,
including cell proliferation, cell death, and cell degradation, is used to simulate the growth. In
particular, the escape rate for cancer from immune surveillance is included for consistency with
experimental observations. The simulation results give rise to a growth curve with an explanation
on a microscopic scale that is shown to agree well with experimental animal tumor growth and
relevant biological implications. Our model clearly shows that an increase in the lysis rate leads to
a decrease in the proliferation rate of cancer cells. The spatial distribution of proliferated cell and
the fractal dimension of the boundary are also measured.
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I. INTRODUCTION

Cancer has been a leading cause of human death in the
world. There is not too much known about the biolog-
ical mechanisms leading to the establishment of or the
growth of malignant tumors. Many attempts have been
made in recent decades to describe the basic biological
mechanisms of tumor growth.

Most tumor growth models were proposed to inves-
tigate one or several basic features, such as the cell
cycle, the cell proliferation, the lack of nutrients, the
competition for resources, and the cytotoxic activity by
the immune response [1–29]. Two types of approaches
have been used to describe the growth of the tumor:
the continuous models [17, 30] and discrete models [1–
4, 8, 15, 22, 27–29, 31]. A few discrete models have used
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an automaton-based method. These cellular automaton
(CA) models are based on the properties of the actual
cells at the cellular level, that is, the microscopic scale.
The CA models use microscopic-scale information to de-
termine the cellular automata rules by applying the rules
for each time step in an iterative manner. In this way,
the CA models, which use the Monte Carlo approach to
the cell dynamics, might be called Monte Carlo Cellular
Automaton models. This approach is also well known to
be very useful for a myriad of stochastic process appli-
cations [32,33].

One of the cancer growth modelling aspects is the
immune response. However, the precise natural com-
plexity of the immune response remains poorly under-
stood. Many studies have established that the immune
response plays a crucial role in eliminating cancer cells
from healthy tissues [23,26,34–37]. A number of authors
[23,26], Bell [35–37] have focused on the details at the cel-
lular level of immune cell binding and delivery of lethal
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hits. In particular, in 1984 Lefever and Erneaux [23]
proposed a reaction diffusion formulation of the growth
of cancerous tissue attacked by immune cytotoxic cells
they used a system of kinetic equations for cell growth
and cell-mediated cytolysis in tumors composed of a two-
step reaction for the kinetics of cell-mediated cytolysis in
tumors. This reaction led only to the tumor-immune cell
complexes producing either dead tumor cells or immune
cells.

In 1994, Kuznetsov and Taylor [21] proposed a new
model for the tumor-immune interaction, which included
the two step reactions in Ref [23]. What was new in
Kuznetsov and Taylor’s model (KT model) was the de-
tachment (or breaking up) of tumor-immune cell com-
plexes from each other. The detachment of the com-
plexes was assumed to occur without damaging the tu-
mor cell, inactivating the immune cell, changing the pro-
gramming for the lysis of tumor cell, or activating an
immune cell to become cancerous. Several assumptions
made by Kuznetsonov and Taylor [21] have lead several
researchers, like Matzavinos and Chaplain [10,11] Galach
[14] to develop new models to investigate the dynamics
of tumor-immune system competition.

Qi et al. [1]developed a cellular automaton model of
cancerous growth with a microscopic description apply-
ing a system of kinetic equations for the growth and cell-
mediated cytolysis in tumors proposed by Lefever and
Erneaux [23] including the mechanical pressure arising
from within the tumor [38]. They attempted to pro-
vide a microscopic explanation for the Gompertz growth
by establishing a set of probabilistic cellular automaton
(PCA) rules. Their simulated results produced a Gom-
pertzian growth curve with a significant fluctuating com-
ponent.

The major purpose of this research is to further de-
velop the CA model of Qi et al. [1] to include more
realistic biological implications from the KT model. In
particular, we create a novel fundamental kinetics model
of tumor growth while neglecting the behavior of the me-
chanical pressure. The new fundamental kinetics model
is able to describe the interaction and the competition
between the tumor and the immune system. Addition-
ally, our model takes into account tumor-cell prolifera-
tion, the tumor’s interaction with the immune system,
resulting in either lysis of the proliferating tumor cells
or the detachment of immune binding without damaging
the cancer cells, as well as the removal of dead tumor cells
in avascular tumors. By adding the detachment of im-
mune binding without damaging cancer cells, we found a
different result from Qi et al. [1] with regard to the vari-
ation of the lysis rate. A large lysis rate gives a lower
number of proliferating cancer cells. This agree well, in
particular, with the experimental results from hormonal
therapy with tamoxifen [39,40]. We have neglected the
presence of inactivated tumor-infiltrating cytotoxic lym-
phocytes (TICLs), which are in the KT model. The
Monte-Carlo approach employs the PCA rules, as in the
models of Smolle and Stettner [4] and Conolly and Kim-

bell [27].
The paper is organized as follows: A phenomenolog-

ical description of the tumor-immune interaction, and
the method of the CA model are presented in Section
II. In Section III, we present the simulation results for
tumor progression. Then, insection IV, we compare the
simulated results with the in vivo experimental results
and find that the two are inagreement in many respects.
For instance, the average growth curve of a thousand tu-
mors simulated by our model agrees well with the Gom-
pertzian growth curve of Ehrlich mouse carcinomas and
spontaneous mouse carcinomas (C3H) as reported by
Steel [41]. Also, the tumor morphology show that mainly
proliferating cells are located at the outermost region of
a tumor and that the fractality of the tumor boundaries
agree well with the clinical experimental results of Bru
et al. [20, 42]. A computational investigation was per-
formed to determine the qualitative growth curves for
the dynamics for various value of each parameter in a
sensitivity analysis, as discussed in Section 4, and some
biological implications are given. In Section 5, several
conclusions and a discussion are given.

II. OUTLINE OF THE CA MODEL

1. Model Design Rationale

It is well established that the immune system plays an
important role in the growth of avascular tumors. Since
the dynamics of the antitumor immune response in vivo
is very complicated, following Matzavinos and Chaplain
[10] we make a biological assumption about the tissue of
a small multicellular tumor. The tumor-infiltrating cy-
totoxic lymphocytes (TICLs) have an element of random
motility, so the kinetic model focuses on the attack on
tumor cells by TICLs without necrosis and at the stage
prior to (tumor-induced) angiogenesis.

According to the clinical studies in Matzavinos and
Chaplain [10], “the tumor development can be effectively
eliminated by tumor-infiltrating cytotoxic lymphocytes
(TICLs) during the avascular stage. The TICLs may
be cytotoxic lymphocytes (CTLs, CD8+ cells), natural
killer-like (NK-like) cells, and/or lymphokine-activated
killer (LAK) cells, including the cytostatic/cytotoxic ac-
tivity of granulocytes and monocytes/macrophages lym-
phokine activated in the tumor.” The TICLs can inter-
act with the tumor cell, forming lymphocyte-tumor-cell
complexes. The detachment results in the proliferating
tumor cells dying due to programmed lysis or or escaping
due to immune surveillance [10,44].

The escape mechanism that prevents the activation of
the immune system has been studied by Anichini and
Morarini [44]. One of the reasons for the escape re-
sult is that the cancer cells shed the antigen peptides on
their surfaces, and by releasing blocking factors, which
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Fig. 1. Fundamental features of the development of can-
cer with an immune response (modified from Jain [37] and
Matzavinos and Chaplain [10].

Fig. 2. Four nearest-neighboring sites (gray) of the tumor
site (black) and the Nearest-neighbor rule (the so-called von
Neumann neighborhoods).

can neutralize NK cells [37], they can decrease the ef-
ficiency of cytotoxicity behavior of immune activations
[34]. A decline of the proliferation rate with increasing
proliferation-tumor-cell numbers is assumed in the case
of avascular microscopic tumor growth in vivo [20, 34,
41, 44, 45]. We will address these facts as fundamental
assumptions to the model.

2. Fundamental Feature of Cancer Development
With an Immune Response

The mathematical function [1] r′prolif.(t) =
rprolif.

(
1− P

K

)
, as an in vivo avascular tumor growth

rate, where P (t) is the number of proliferating tu-
mor cells and K is the carrying capacity for tumor
proliferation, has been defined. Simply speaking, the
proliferation rate includes the crowding effect of viable
tumor cells. As is evident, r′prolif. decreases when there
is an increase in the number of proliferating malignant
tumor cells. This will affect the first output of the
first reaction as shown in Fig. 1 or Fig. 3. Moreover,
the parameter rprolif. could indicate the proliferative
activity of tumor cells. The definition of the rate of
avascular tumor growth in vivo, r′prolif., may arise from

Fig. 3. Schematic diagram illustrating how cells in the
tissue may change their state from one to another, and how
cancer cells reproduce. P (t) denotes the number of proliferat-
ing cells at time t, C(t) denotes the number of TICLs-tumor
cell complexes, and D(t) denotes the number of dead tumor
cells. In this model, the function r′prolif. depends on the num-
ber of proliferating cells and on the carrying capacity of the
proliferating cells.

limitation on the amount of nutrient that is available
for the proliferation of cancer cells or from increasing
accumulation of waste products, which causes a decrease
in the proliferation rate of cancer cells [20,44].

In the second reaction, which we may call the cytoly-
sis reaction, the parameter rbinding is a measure of the
recognition or response of TICLs to the proliferating tu-
mor cells. The parameter rescape describes the potential
for the tumor escaping the host’s immune surveillance
[10,44]. The parameter rlysis describes the potential for
the immune system to deliver lethal hits to a tumor cell
or to program a tumor cell’s death [10,23,26,27,35].

For the last reaction, we introduce the parameter rde-
cay rdecay, which describes dissolution or disappearance
of the dead cancer cells from the tumor (although, there
is no definitive experimental data on the details of this
tumor-cell destruction, a few authors have used this pa-
rameter [1,4,14,23,26,28,37,41].

According to the description above we denote the pro-
liferating tumor cells, the dead tumor cells, the tumor
infiltrating cytotoxic lymphocytes and the TICLs-tumor
cell complexes by P , D, TICLs, and C, respectively.
The fundamentals of tumor development are schemati-
cally represented in Fig. 1.

The parameters rprolif., rbinding, rescape, rlysis, and
rdecay are non-negative kinetic constants. rprolif. is the
constant proliferation rate of tumor cells. rbinding is the
constant binding rate of TICLs to tumor cells. rescape is
the constant detachment rate of TICLs from cancer cells
without damage to the cells. rlysis is the detachment rate
of TICLs from dead tumor cells due to the irreversible
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programming of the tumor cells for lysis. The parameter
rdecay is the constant decay rate of dead tumor cells.

3. Methodology of the Cellular Automata
Model

The fundamental kinetics of tumor growth is trans-
ferred to the PCA rules in the same way as done by Qi
et al. [1]. After setting of PCA rules, we use a com-
puter program to implement the cell dynamics by using
stochastic processes. A flowchart of the Monte Carlo
simulation algorithm is given in Appendix A.

We now describe this automata-based model in more
detail. The host tissue is represented as a lattice of size
L × L. In the tissue model, the coordinates (xn, yn)
with n = 1, 2, 3, · · ·, L are designated by different values
to indicate either normal cells, proliferating tumor cells,
viable cells, cell complexes, or dead tumor cells. L is
chosen to be sufficiently large so that the tumor cells
never reach the boundary of the lattice, and there is no
finite-size effect.

Time increases in discrete steps with synchronous up-
dating, implying that in each time step, any site can be
updated only once. We distinguish each tumor cell ac-
cording to two possible states:

[1 ] Proliferating state (i.e., cancer or proliferating
tumor cell, P ), and

[2 ] non-proliferating state or stationary state (i.e., C
and D).

Each simulated tumor progresses according to the
following algorithm:

(I) At the initial time step, t = 0 we start with an
initial configuration of five cancer cells located at
the center of normal tissue as shown in Fig. 2.

(II) At each subsequent time step the rules of the cel-
lular automaton are applied to each tumorous cell
with the cells being randomly selected one by one
with the same probability when the same cell type
the same rates are used. A randomly selected cell
will carry out one of the actions upon its state as
shown in the schematic diagram, Fig. 3, as follows:

(1) Proliferating state: If the selected cell is a
cancer cell, the cell has one of three possi-
ble actions with the function r′prolif. and the
parameter rbinding. :
(i) The cancer cell may invade a normal cell

with a probability r′prolif. if the cancer cell
has at least one nearest-neighbor normal
cell randomly chosen with the same prob-
ability,

(ii) The cancer cell is bound by TICLs with
a probability rbinding,

(iii) The cancer cell may not change with a
probability 1 − (r′prolif. + rbinding) or
there is no nearest neighboring normal
sites in the case of invasion (probability
r′prolif.).

(2) Stationary state: If the selected cell is in a
non-proliferating state, which consists of dead
cancer cells and TICL-tumor complex cells,
which may be defined as cell complexes, it is
a dead cancer cell or a TICL-tumor complex
cell (now called a cell complex).

(2.1) The complexes: The cell may take one of three
actions with parameters rescape, rbinding, and
rlysis:

(i) The complexes revert to a cancer cell with
a probability rescape,

(ii) The complexes may lysis to a dead cancer
cells with a probability rlysis,

(iii) The complexes may not change state with
a probability 1 − (rescape + rlysis)

(2.2) The dead cancer cell: The site occupied by
this dead cell may take on one of two actions
according to parameter rdecay:

(i) The site may be reoccupied by a normal
cell with probability rdecay,

(ii) The cell may not change with probability
1 − rdecay,

All cells are selected, as in a time step.

(III) The PCA’ rules (step II) are then applied itera-
tively to each time step until we reach a designated
maximum number of time steps.

A pseudo-random number (r) is a part of a sequence
generated by using a seed number supplied with a value
in the range 0 < r < 1, The probabilities of various events
are distributed in the interval 0 to 1. That is, the sum
of the probabilities of actions in each cancer cell has to
less than one. For implementation of the rules for cancer
cells, the setting parameters have to satisfy rprolif. +
rbinding ≤ 1. Also, the setting parameters concerning
the TICL-tumor-cell complexes have to satisfy rescape +
rlysis ≤ 1.

III. SIMULATED RESULTS AND
DISCUSSION

We have written a program to carry out the instruc-
tions given in the flowchart in Appendix A. The total
number of tumor cells present at time t is denoted by
N(t), which is equal to the sum of P (t), the number
of proliferating tumor cells at time t, C(t), the number
of TICL-tumor cell complexes at time t, and D(t), the
number of dead tumor cells at time t; that is, N(t) =
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Fig. 4. (a) Snapshots of a simulated tumor on a 57 × 57 square lattice, the proliferating cell cluster and its boundary in time
steps of 0,15, 30, 50, and 80, respectively. The simulation setting is rprolif. = 0.85, rbinding = 0.1, rescape = 0.5, rlysis = 0.35,
rdecay = 0.35, and K = 550. The color code is �: proliferating tumor cell, �: TICLs-tumor cell complexes, �: dead tumor cell,
and �: normal cell. The definition of boundary cells for this model is a set of the outermost cells in each row and column of the
two-dimensional square lattice. (b) Typical simulated tumor growth curve (circles) with the fitted Gompertz growth function.
This fitting used the Gompertz parameters A = 0.59363 ± 0.00302 and B = 0.12285 ± 0.00067 with r2 = 0.99838. This is the
same simulation as in Fig. 4(a). The five snapshots of the simulated tumor at time steps of 0, 15, 30, 50, and 80 (solid gray)
show the progression of the tumor shape.

P (t)+C(t)+D(t). Consequently, N(t) is the total num-
ber of tumor cells within a tumor, a measure of the size
of the tumor at time t. We then average N(t) over Ts
tumors, where N(t) is the total number of tumor cells
in the tumor, and Ts is the number of tumors that are
simulation.

The simulation is started by placing five tumor cells
in the center of a square lattice. We then start the inva-
sion of the tumor cells into the rest of the lattice, which
represents normal tissue, by following the steps given in
the algorithm of Section II.3. During a time step, we use
a random number generator to choose the action that is
to be taken by the cell, as detailed in Fig. 3. After a
time step, the simulated results are obtained and a snap-
shot of the simulated tumor pattern at time t, as shown

in Fig. 4(a). Several two-dimensional illustrations of
tumor invasion into normal, tissue as generated by the
program, are shown in Figs. 4(a), 4(b), and 6(a).

1. Snapshots of a tumor and Its Growth Curve:
Gompertz Growth Function

Some typical snapshots of the simulated tumor gener-
ated at different times are seen in Fig. 4(a). Fig. 4(b)
shows the growth curve of this tumor growth with a fit-
ted Gompertz function. The proliferation function of
tumor cells and the related growth curve are shown in
Fig. 5(a). The growth curves of tumors are shown, to-
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Fig. 5. (a) Plots of time evolutions of both the proliferating function value of avascular tumor growth, r′prolif. (gray solid line)
and the total number of tumor cells (black solid line) from averaging 1000 simulated tumors. The proliferation rate of tumor
cells in vivo is defined by r′prolif. = rprolif.

(
1− P

K

)
, when P is the number of proliferating cells in the tumor, and K is the

carrying capacity of the proliferating cells. We use the right axis for the functional value of r′prolif. and the left axis for the total
number of tumor cells. The parameter settings are the same as in Fig. 4(a). (b) Time evolutions of the total number of tumor
cells (gray solid circles), the number of proliferating cells (gray solid triangles), and the number of TICLs-tumor cell complexes
(black triangles) and dead tumor cells (black stars). The averaged 1000 individual simulations use the same parameters as in
Fig. 4(a).

Table 1. Summary of functions and constant input parameters for the model.

Function in the model

r′prolif. Rate of proliferation of cancer cells (varies with the number of proliferating tumor cells)

Parameters

rprolif. Base rate of proliferation of cancer cells

rbinding Rate of TICLs binding with tumor cells form cell complexes

rescape Rate of breaking TICLs detachment from complex cells without damaging tumor cells

rlysis Rate of TICLs detachment from the complex cells as a result of the lysis of tumor cells

rdecay Rate of dead tumor cells being degraded to normal cells

K The carrying capacity of tumor proliferation

∗ More extensive discussions of the parameters rprolif., rbinding, rlysis, and rdecay are given by Lefever and Erneaux [23] and
Qi et al. [1] while more extensive discussions of rescape and rlysis are given by Matzavinos and Chaplain [10]. The experimen-
tal data of rbinding and rlysis are given in Lefever and Erneux [59].

Table 2. Fitted Gompertz function fit to the growth curves of P (t), C(t), and D(t) of Fig. 5(b).

The type of cell in the tumor A B Initial number of cells Maximum r2

number of cells

Proliferating cell 0.54588 0.00106 5 469.697 0.99977

TICLs-cancer cell complexes 0.50530 0.10538 0.493 59.755 0.99969

Dead tumor cells 0.58502 0.10023 0.175 59.913 0.99948

gether with their constituent parts (proliferating cells,
cells complexes, and dead tumor cells), in Fig. 5(b).

2. Growth Fraction Function and Growth Curve

The proliferation rate in vivo, r′prolif., is the rate
function due to the number of proliferating tumor cells
in each time step, as represented in Fig. 5 for the same

parameter settings as Fig. 4(a). Fig. 5(a) shows the
time evolutions of the total number of tumor cells (black
solid line; left axis) and the evolution of r′prolif. (gray
solid line, right axis). The rate r′prolif. gives the same
behavior as reported by Gyllenberg and Webb [31].
Their was a function of the total number of tumor cells,
but r′prolif. in our model is a function of the ratio of
the number of proliferating cells to the total number of
tumor cells. The growth fraction with the same trend
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Fig. 6. (a) Influences of different series of pseudo-random numbers from five different seeds on the tumor shape on 47 ×
47 square lattices with time progression for the same simulation settings as in Fig. 4(a). (b) Typical averaged growth curve,
where the error bars are of the same magnitude as the size of the points. The simulation result is for an average over 1000
individual simulations with the parameters rprolif. = 0.25, rbinding = 0.04, rescape = 0.6, rlysis = 0.3, rdecay = 0.35, and K
= 550. (c) Comparison between the simulated tumor growth (circles) and the experimental growth curves in vivo for the
spontaneous mouse carcinoma C3H (Steel [41] black solid line) with a coefficient of nonlinear regression r2 = 0.99985. The
Gompertz parameters are Vo = 0.0376 (cm)3, A = 0.177 (day)−1, B = 0.0311 (day)−1, and Vmax = 11.12 (cm)3. The parameter
settings are rprolif. = 0.25, rbinding = 0.04, rescape = 0.6, rlysis = 0.3, rdecay = 0.35, and K = 550 with No = 6.02 and Nmax

= 551.18. (d) Comparison between the simulated tumor growth and the experimental growth curves in vivo for mouse Ehrlich
[41] carcinoma with the coefficient of nonlinear regression r2 = 0.9997. The Gompertz parameters are Vo = 0.0226 (cm)3, A =
0.456 (day)−1, B = 0.102 (day)−1, and Vmax = 1.94 (cm)3. The parameter settings are rprolif. = 0.85, rbinding = 0.1, rescape

= 0.5, rlysis = 0.35, rdecay = 0.35, and K = 550 with No = 8.381 and Nmax = 627.379.
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as that of two-compartment cell-population model
of Gyllenberg and Webb [31] also revealed Gompertzian
growth.

IV. COMPARISON OF SIMULATION
RESULTS WITH EXPERIMENTAL

RESULTS

A spatial visualization of tumor spreading on the two-
dimensional square lattice leads us to some results: The
growth curve from simulation in good agreement with
experimental data for Ehrlich mouse carcinomas and for
spontaneous mouse carcinomas (C3H) as reported by
Steel [41]. The fractality of the boundary, the spatial
distribution of cell proliferation, and the relevant biolog-
ical implications will be represented.

1. Snapshots of Five Typical Simulated Tumors
and the fractality of the boundary

The different morphologies of five typical simulated
tumor patterns are shown in Fig. 6(a). Fig. 6(b) shows
the growth curve for an average of over 1000 realizations.

The tumors obtained from the stochastic model are
found to have an approximately circular shape with a
rough boundary, as shown in Fig. 3(a). A few researchers
[6–8,19,46–48] have been interested in the fractal dimen-
sion (Df ) of the stochastic growth model. We define the
boundary cells of the simulated tumor using assuming
that they are the outermost cells of the tumor in each
row and each column in the lattice. The irregular bound-
aries of tumors can be examined by using a fractal geo-
metric analysis. Moreover, the concept and measurement
of fractal dimension by using the box-counting method
is given by Bru et al. [20], Cross [49], Laird [50]. Malig-
nant melanomas in vivo have been investigated and the
fractal dimension of the boundary of the tumor is found
to lie mainly in the range 1.05 – 1.30 [49]. Bru, et al.
[20] and also published in vitro and In-vivo experimental
data for the boundary of human and animal solid tu-
mors with values of Df in the range of 1.09 – 1.34, which
agrees well with the data of Cross [49]. Our mean fractal
dimension of five tumor boundaries (between time steps
10 and 350) lies in 1.11 – 1.22, which agrees well with the
observations of other researchers Bru et al. [20], Lefever
and Erneux [23], and Cross [49]. The fluctuating bound-
ary of a simulated tumor can be show to have nearly the
same shape as the boundary of tumors in clinical studies.

2. Comparisons of the Average Growth Curve
with the Experimental Data

The Gompertz growth curve is the most commonly
used curve to fit the experimental data for in-vivo tumor

growth [40,41,50,51] and is an important feature noticed
in actual tumor growth. The Gompertz curve [41,52,53]
is given as

V (t) = Vo exp
{

A

B
(1− exp(−Bt))%

}
, (1)

where V (t) is the size of the tumor at time t, Vo is the
initial size, and A and B are two positive parameters
whose values are determined by a least-square best fit of
Eq. (1) to the data. Fig. 6(a) shows the average growth
curve of a thousand tumors. At time t tumor i will give
Ni(t), with the error bar for Ts tumors being defined as

2
√∑T s

i=1(Ni(t)−N̄(t))2

Ts−1 at the 95 % confidence interval.
Fig. 6(b) represents the averaged growth curve from

1000 simulation runs with their error bars having the
same magnitude as the data points. The averaged
growth data from our simulation runs with settings
rprolif = 0.25, rbinding = 0.04, rescape = 0.6, rlysis =
0.3, rdecay = 0.35, and K = 550 is shown in Fig. 6(c). It
is noteworthy to note that the Gompertz curve was used
to fit the experimental growth curve of tumors in vivo.
The Gompertz parameters for the experimental data for
a spontaneous mouse carcinoma (C3H) are Vo = 0.0376
(cm)3, A = 0.177 (day)−1, B = 0.0311(day)−1, and Vmax

= 11.12 (cm)3. To obtain the fit, we had to normalize
both the simulation and the experimental data. The
normalization of the Gompertz curve was such that the
maximum size and the normalization of the simulated
data was, respectively, No = 6.02 and Nmax = 551.18.
The two normalized growth curves are shown together in
Fig. 6(c).

The averaged growth curve yielded by our simulation
runs with settings rprolif = 0.85, rbinding = 0.1, rescape

= 0.5, rlysis = 0.5, rdecay = 0.5, and K = 550 is shown
in Fig. 6(d). The Gompertz parameters for the experi-
mental data of Ehrlich carcinomas in mice are Vo = 2.26
× 10−7 (cm)3, A = 0.456 day−1, B = 0.102 day−1, and
Vmax =1.94 cm3. The normalization of the simulated
data was such that Nmax = 625 and No = 8.394. The
two normalized growth curves for Ehrlich carcinomas are
shown together in Fig. 6(d).

3. Spatial Distribution of proliferated Cell in
tumors

Bru et al. [20], clinically studied the spatial distri-
bution of cell proliferation in tumors by counting after
tracking with Bromodeoxyridine (Brdu). In particular,
Bru et al. [20] defined three regions of the avascular tu-
mor on the basis of the radius of the tumor (assuming
that the tumor is circular). The innermost region lies in
the region 0 ≤ ri < R/2. The intermediate region lies
in the region R/2 ≤ ri < 4R/5. Finally, the outermost
region lies in the region ri ≥ 4R/5. ri is the distance of a
particular site occupied by a cancer cell from the center
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of the tumor. They measured the number of proliferat-
ing cells in each of the three regions in a human colon
adenocarcinoma. They found that the innermost region
contained 6 % of the proliferating cancer cell and made
up 25 % of the tumor. The intermediate region contained
14 % of the proliferating cells and made up 39 % of the
tumor. The last region contained 80 % of the proliferat-
ing cells and made up 36 % of the tumor. Most of the
proliferating cells were found in the outermost regime,
similar to that found by Bru et al. [20]. The ratio of
proliferating cancer cells found in the three regions is 80
: 14 : 6 (in order of outermost to innermost). Fig. 4(a)
has shows the proliferating cells in a typical tumor. We
measured these quantities by averaging over 1000 simu-
lated tumors with parameters rprolif = 0.85, rbinding =
0.1, rescape = 0.5, rlysis = 0.35, rdecay = 0.35, and K
= 550. We empirically set the saturation phase of the
tumor growth from time steps 80 to 150 and the ratio of
proliferating tumor cells that we found for the outermost,
intermediate, and innermost regimes, was 71 : 17 : 11.
The errors were 0.094, 0.082, and 0.124, respectively. We
may conclude that the proliferating cells of the simulated
tumor were located mostly in the outermost regions.

4. Sensitivity Analysis by Varying parameters
with Some Biological Effect

We changed the values of some of the parameters in
the model to see how the growth of the tumor would be
affected. The ranges chosen for the parameter values in
our model were motivated either by experimental clinical
data [1,23] or by the computational experiment results
Steel [41], and Barabasi and Stanley [51]. All simulation
results could be fitted well with a Gompertz function.

Mathematically, the behavior of the Gompertz curve
can be divided into three regions [53]. These are deter-
mined by the position of the inflection point [41], and
the crossover time [51]. Biologically speaking, the three
regions reflect different growth behavior. The first region
or early phase reflects the dynamics of the initial stage of
tumorigenesis. The phase continues until the number of
tumor cells reaches a value equal to 0.37 of the maximum
number of tumor cells. The time step at which this oc-
curs is called the infection point in the curve. We denote
this time as t1. The second region or intermediate phase
of the growth curve is the portion of the curve which be-
gins at t1 and extends to the crossover point at t2. The
crossover point is the intersection of the tangent lines
of the initial portion of the Gompertz curve and of the
saturated part of the Gompertz curve. Then, the time
t2 means the time to reach the saturated phase of the
Gompertz curve. The third region of the curve starts at
the cross over point and extends into the saturated state.
The three regions of the Gompertz curve are shown in
Appendix B.

Fig. 7. (a) Plots of the time evolution of the total numbers
of tumor cells. The inset shows magnified time step of 5 to 10
and 20 to 30. The simulation results are averaged over 1000
individual realizations by varying the value of rbinding from
0.00 to 0.15 in steps of 0.05 while fixing the other values at
rprolif. = 0.85, rescape = 0.5, rlysis = 0.35, rdecay = 0.35, and
K = 550. (b) Plots of the time evolutions of the numbers of
proliferating cells. The simulation results are averaged over
1000 individual realizations with the same parameters as in
Fig. 7(a).

To see how the immune system influences the growth
of the tumor, we varied rbinding and rescape because the
value of these two rates depends on the immune system.
We varied the value of rbinding and obtained the sim-
ulation results as shown in Figs. 7(a), and 7(b). We
can conclude that the proliferating cells decrease as the
rate of binding with TICLs increases. This also causes
saturation to be reached at a later time.

The escape rate reflects the efficiency of cancer cells
evading the binding process of TICLs. A greater escape
rate indicates a shorter time for binding maintenance
before cancer cells evade unfolding TICLs. We varied
rescape to get the simulation results shown in Figs. 8(a),
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Fig. 8. (a) Plots of the time evolution of the total num-
ber of tumor cells. The simulation results are averaged over
1000 individual realizations by varying the value of rescape

from 0.0 to 0.4 in steps of 0.2 while fixing the other values
at rprolif. = 0.85, rbinding = 0.1, rlysis = 0.35, rdecay = 0.35,
and K = 550. (b) Plots of the time evolutions of the total
number and the number of proliferating tumor cells of the
simulated tumor. The simulation results are averaged over
1000 individual realizations with the same parameters as in
Fig. 8(a).

and 8(b). The growth curves for the proliferating tu-
mor cells show that increasing rescape will cause a rate of
growth increase in the initial phase. Saturation will be
achieved in a shorter time with a greater tumor size as
rescape increases.

The lysis rate, rlysis, is the death rate of cancer cells
due to programmed death. We varied the value of the
parameter rlysis and obtained the results shown in Fig.
9(a) and 9(b). The growth of the number of proliferating
tumor cells increases only slightly with increasing rlysis

in the initial phase. The growth curves reach crossover

Fig. 9. (a) Plots of the time evolution of the total number
of tumor cells. The simulation results are averaged over 1000
individual realizations by varying the value of rlysis while
fixing the other values at rprolif. = 0.85, rbinding = 0.1, rescape

= 0.5, rdecay = 0.35, and K = 550. (b) Plots of the time
evolutions of the total number and the number of proliferating
tumor cells of the simulated tumor. The simulation results
are averaged over 1000 individual realizations with the same
parameters as in Fig. 9(a).

more they do for than smaller sizes. We found an es-
sential difference concerning variation of the lysis rate
between our model and that of Qi et al. [1]. The con-
clusion of Qi et al. [1] is that a greater rlysis, gives a
greater number of proliferating cells in the third region.
We can get the same result as Qi et al. do [1] without
the escape mechanism.

The decay rate, rdecay, may be considered as the ef-
ficiency of TICLs in destroying the cancer cells with
programming for lysis after unfolding. A greater decay
rate yields a shorter time for destruction of cancer cells.
rdecay was varied from 0.2 to 0.5 in steps of 0.1 with
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the values of all the other parameters kept constant. In-
creasing the decay rate of the cancer cells resulted in a
decrease in the total number of cancer cells and a slight
increase in the number of proliferating tumor cells in the
third region. The crossover point for each curve was be
reached in a shorter time.

From our studies, it is yet to be seen if experimentalists
can take advantage of our findings. After we have the
simulational results for various parameters, it is worth
discussing some biological implications of those results so
that the biological impacts for some parameters might be
understood. The biological meaning of each parameter
is as follows:

1. The proliferative activity of tumor cells is reduced
by decreasing rprolif. Clinical trials have shown
that increasing proliferation rates yield smaller tu-
mors [31,54]. For instance, Blay et al. [54] studied
gastrointestinal stromal tumors (GIST), which are
solid tumors. GISTs exhibit typical activating mu-
tations of KIT or PDGFRA proto-oncogene, which
are most likely causal molecular events of GISTs.
Oncogene-targeted therapy using Imatinib, a ty-
rosine kinase inhibitor blocking most mutated-
activated KIT and (platelet-derived growth-factor
receptor) PDGFR α proteins of GISTs, controlled
tumor growth up to 85 %. This therapy may lead
to elimination of both new proliferating tumors and
existing tumors. The parameters that affect adop-
tive therapy may decrease rprolif., and the compar-
ison with our simulation results is good.

2. Ehe defensive activity of immune cells is modi-
fied by increasing rbinding and rlysis in order to
have a faster response by the immune response
system. Studying the many clinical experiments
(1995-2001) of Matzavinos and Chaplain [11], we
conclude that cytokines are one of the components
of the immune system that are involved in modu-
lating the local cellular immune response dynam-
ics with the production of several interleukins (IL-
2, IL-10, and IL-12), cell-adhesion molecules and
chemokines in tumor tissue, the induced chemo-
taxis of T-cells, and the cytotoxic reactions of
TICLs against tumor cells. Consequently, the ef-
fectiveness of cytokines might be the reason for in-
creasing rbinding and rlysis in the kinetic model.

3. A modification of the aggressiveness of immune
cells against the tumor by increasing the parameter
rlysis give a more efficient immune activity. Almost
all breast cancer patients have hormone receptor
positivity. Tamoxifen is a hormonal treatment for
breast cancer. Hickman [55] has studied anticancer
therapies by induced apoptosis. Ellis et al. [56]
have reported clinical studies that show that in-
creases in apoptosis in human breast cancer occur
with tamoxifen treatment. Dowsett et al. [39,57],
Cameron et al. [40], and Bardon et al. [58] studied

tumor regression in breast cancer xenografts with
tamoxifen and have been reported the same results.
Xenograft studies support increased apoptosis and
decreased proliferation after oestrogen withdrawal
[39]. However, the relative importance of these two
processes still remains unclear [40].

We increased rlysis with the other parameters fixed,
which means that the escape parameter is also fixed.
The kinetic model in Fig. 1 shows the competition be-
tween TICLs and cancer cells. Increasing rlysis and fix-
ing rescape may yield enhanced immune efficiency, im-
plying a decrease in the number of proliferating cells due
to the escape process. If the rate rlysis, is increased
the dead cancer cells increase in number, which also de-
creases the quantity of escaping cancer cells from the
TICL-cancer cell complexes, ultimately decreasing pro-
liferation.

V. CONCLUDING REMARKS

The kinetic model shown in Fig. 1 shows a tumor
growth that is governed by the processes of proliferation,
binding, escape, lysis, and decay by using the cellular au-
tomaton method with five parameters to represent these
processes. With this kinetic model and the simulation
method, we can show that different sets of the five ki-
netic parameters will give differing Gompertzian curves.

We can conclude from the simulation results that a
greater tumor size might not indicate aggressiveness of
tumor growth. In particular, we agree with Steel [41]
that the quantity of proliferating cells be a better indi-
cation of tumor size.

This CA model also allows us to quantify the pro-
portion of each cell type within a simulated tumor as
a function of each set of five parameters. The cellular
automata model on a three-dimensional square lattice is
also in the process of development.

APPENDIX A: FLOWCHART OF THE
MONTE CARLO CELLULAR AUTOMATA

ALGORITHM OF TUMOR

Initial Configuration : with five proliferating tumor
cells in the middle of the tissue model

APPENDIX B

Plots of the time evolution of the total number of tu-
mor cells (circles). The three segments of the sigmoidal
Gompertzian curve from the simulation results show
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different growth dynamics. The first segment has
range from 0 to 14(t1) time steps at the first solid circle;
the second phase runs from day 15 until the time step at
31(t2), that is the crossover time; the third phase begins
at 32 days from the second solid circle. The simulation
results are averaged over 1000 individual realizations
with the simulation settings rprolif. = 0.85, rbinding =
0.1, rescape = 0.5, rlysis = 0.35, rdecay = 0.35, and K =
550.
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