$ y= x^2 arcsec (x+1) + arccsc (2x+3) $
วิธีทำ
\begin{align} & \cssId{Step1}{ \frac{dy}{dx} = x^2 \frac{d}{dx} arcsec (x+1)+arcsec (x+1) \frac{d}{dx} x^2+ \frac{d}{dx}arccsc (2x+3) } \\ &\cssId{Step2}{= x^2 \frac{1}{|x+1| \sqrt{(x+1)^2-1}} +arcsec (x+1) (2x)+ \frac{-1}{|2x+3| \sqrt{(2x+3)^2-1}} (2) } \\ &\cssId{Step3}{ = \frac{x^2}{|x+1| \sqrt{(x+1)^2-1}} +2x \cdot arcsec (x+1) - \frac{2}{|2x+3| \sqrt{(2x+3)^2-1}} } \\ \end{align}