$$ \int \tan ^2 x \sec x dx \\ $$
วิธีทำ \begin{align} & \cssId{Step1}{ให้ u = \tan x ,dv = \tan x \sec x dx }\\ & \cssId{Step2} {ได้ว่า du = \sec^2 x dx , v = \sec x }\\ & \cssId{Step3} { ดังนั้น \int \tan ^2 x \sec x dx = \tan x \sec x - \int \sec^3 x dx } \\ & \cssId{Step4}{ =\tan x \sec x - \int (1+\tan^2 x) \sec x dx } \\ & \cssId{Step5}{ =\tan x \sec x - \int \sec x dx - \int \tan^2 x \sec x dx } \\ &\cssId{Step6}{ ดังนั้น 2 \int \tan ^2 x \sec x dx = \tan x \sec x -\ln | \sec x + \tan x| +C } \\ &\cssId{Step7}{นั่นคือ \int \tan ^2 x \sec x dx = \frac{1}{2} [ \tan x \sec x -\ln | \sec x + \tan x|] + C} \\ \end{align}