Survey of All Six - Element Groups


           Let G be any group of order 6 . By Cauchy's thorem, G has an element " a " of order 2 and an element " b " of order 3. The element (e, a, b, b2, ab, ab2) Are all distinct; and since G has only six element, these are all the element in G, thus " ba " is one of the elements e , a , b , b2, ab or ab2

1.)Prove that " ba " cannot be equal to either e , a , b or b2 Thus, ba = ab or ba = ab2
Proof Case 1 ถ้า ba = e ba·a = ea ba2 = a2 be = a b = a (ซึ่งเกิดการขัดแย้ง) Case 2 ถ้า ba = a ba·a = a·a ba2 = a2 be = e b = e (ซึ่งเกิดการขัดแย้ง) Case 3 ถ้า ba = b ba·a = ba ba2 = ba be = ba b = ba (ซึ่งเกิดการขัดแย้ง) Case 4 ถ้า ba = b2 ba·a = b·b a = b (จาก การตัดออกทางด้านซ้าย จะเกิดการขัดแย้ง) ดังนั้น ba = ab or ba = ab2
Either of these two equations completely determines the table of G
2.) If " ba " = " ab " Prove that G ~= Z6
Proof.....
                             Z6 ={ [0] , [1] , [2] , [3] , [4] , [5] }
                             G  ={ e , a , b , b2, ab , ab,2 }
                             F: G -----> Z6  
                             กำหนดโดย 	f(e) = [0]
                                                f(a) = [3]
                                                f(b) = [2]
                                                f(b2) = [4]
                                                f(ab) = [5]
                                                f(ab2) = [1]
                               และจาก " ba " = " ab " 
                                     
สามารถแสดงเป็นตารางดังนี้
(G,·) e ab2 b a b2 ab
e e ab2 b a b2 ab
ab2 ab2 b a b2 ab e
b b a b2 ab e ab2
a a b2 ab e ab2 b
b2 b2 ab e ab2 b a
ab ab e ab2 b a b2
(Z,+) [0] [1] [2] [3] [4] [5]
[0] [0] [1] [2] [3] [4] [5]
[1] [1] [2] [3] [4] [5] [0]
[2] [2] [3] [4] [5] [0] [1]
[3] [3] [4] [5] [0] [1] [2]
[4] [4] [5] [0] [1] [2] [3]
[5] [5] [0] [1] [2] [3] [4]
จากตารางจะได้ว่า G ~=Z6

3.) If " ba " = " ab2", Prove that G ~= S3
Proof.....
                  S3  = {(1) , (1 2) , (1 3) , (1 2 3) , (1 3 2) , (2 3) }
                  G  = { e , a , b , b2, ab , ab2 }
                  F: G --------> S3
                  กำหนดโดย f(e) = (1)
                                    f(a) = (1 2)
                                    f(b) = (1 2 3)
                                    f(b2) = (1 3 2)
                                    f(ab) = (1 3)
                                    f(ab2) = (2 3)
                       และจาก " ba " = " ab2"
                                   สามารถแสดงเป็นตารางได้ดังนี้
(G,·) e a ab b b2 ab2
e e a ab b b2 ab2
a a e b ab ab2 b2
ab ab b2 e ab2 a b
b b ab2 a b2 e ab
b2 b2 ab ab2 e b a
ab2 ab2 b b2 a ab e
(S3,+) (1) (1 2) (1 3 ) (1 2 3) (1 3 2) (2 3)
(1) (1) (1 2) (1 3 ) (1 2 3) [4] (2 3)
(1 2) (1 2) (1) (1 2 3) (1 3 ) (2 3) (1 3 2)
(1 3 ) (1 3 ) (1 3 2) (1) (2 3) (1 2) (1 2 3)
(1 2 3) (1 2 3) (2 3) (1 2) (1 3 2) (1 3 2) (1 3)
(1 3 2) (1 3 2) (1 3 ) (2 3) (1) (1 2 3) (1 2)
(2 3) (2 3) (1 2 3) (1 3 2) (1 2) (1 3 ) (1)

จากตารางจะได้ว่า G~= S3




Next

survey of all eight-element groups