Let G be any group of order 6 . By Cauchy's thorem, G has an element " a " of order 2 and an element " b " of order 3.
The element (e, a, b, b2, ab, ab2)
Are all distinct; and since G has only six element, these are all the element in G, thus
" ba " is one of the elements e , a , b , b2, ab or ab2
1.)Prove that " ba " cannot be equal to either e , a , b or b2 Thus, ba = ab or ba = ab2
|
Proof
Case 1 ถ้า ba = e
ba·a = ea
ba2 = a2
be = a
b = a (ซึ่งเกิดการขัดแย้ง)
Case 2 ถ้า ba = a
ba·a = a·a
ba2 = a2
be = e
b = e (ซึ่งเกิดการขัดแย้ง)
Case 3 ถ้า ba = b
ba·a = ba
ba2 = ba
be = ba
b = ba (ซึ่งเกิดการขัดแย้ง)
Case 4 ถ้า ba = b2
ba·a = b·b
a = b (จาก การตัดออกทางด้านซ้าย จะเกิดการขัดแย้ง)
ดังนั้น ba = ab or ba = ab2
| |
Either of these two equations completely determines the table of G
2.) If " ba " = " ab " Prove that G ~= Z6
|
Proof.....
Z6 ={ [0] , [1] , [2] , [3] , [4] , [5] }
G ={ e , a , b , b2, ab , ab,2 }
F: G -----> Z6
กำหนดโดย f(e) = [0]
f(a) = [3]
f(b) = [2]
f(b2) = [4]
f(ab) = [5]
f(ab2) = [1]
และจาก " ba " = " ab "
สามารถแสดงเป็นตารางดังนี้
(G,·) | e | ab2 | b | a | b2 | ab |
e | e | ab2 | b | a | b2 | ab |
ab2 |
ab2 |
b |
a |
b2 |
ab |
e |
b |
b |
a |
b2 |
ab |
e |
ab2 |
a |
a |
b2 |
ab |
e |
ab2 |
b |
b2 |
b2 |
ab |
e |
ab2 |
b |
a |
ab |
ab |
e |
ab2 |
b |
a |
b2 |
|
(Z,+) |
[0] |
[1] |
[2] |
[3] |
[4] |
[5] |
[0] |
[0] |
[1] |
[2] |
[3] |
[4] |
[5] |
[1] |
[1] |
[2] |
[3] |
[4] |
[5] |
[0] |
[2] |
[2] |
[3] |
[4] |
[5] |
[0] |
[1] |
[3] |
[3] |
[4] |
[5] |
[0] |
[1] |
[2] |
[4]
| [4] |
[5] |
[0] |
[1] |
[2] |
[3] |
[5] |
[5] |
[0] |
[1] |
[2] |
[3] |
[4] |
|
จากตารางจะได้ว่า G ~=Z6
|
3.) If " ba " = " ab2", Prove that G ~= S3
|
Proof.....
S3 = {(1) , (1 2) , (1 3) , (1 2 3) , (1 3 2) , (2 3) }
G = { e , a , b , b2, ab , ab2 }
F: G --------> S3
กำหนดโดย f(e) = (1)
f(a) = (1 2)
f(b) = (1 2 3)
f(b2) = (1 3 2)
f(ab) = (1 3)
f(ab2) = (2 3)
และจาก " ba " = " ab2"
สามารถแสดงเป็นตารางได้ดังนี้
(G,·) |
e |
a |
ab |
b |
b2
| ab2 |
e |
e |
a |
ab |
b |
b2 |
ab2 |
a |
a |
e |
b |
ab |
ab2 |
b2 |
ab |
ab |
b2 |
e |
ab2 |
a |
b |
b |
b |
ab2 |
a |
b2 |
e |
ab |
b2 |
b2 |
ab |
ab2 |
e |
b |
a |
ab2 |
ab2 |
b |
b2 |
a |
ab |
e |
|
(S3,+) |
(1) |
(1 2) |
(1 3 ) |
(1 2 3) |
(1 3 2) |
(2 3) |
(1) |
(1) |
(1 2) |
(1 3 ) |
(1 2 3) |
[4] |
(2 3) |
(1 2) |
(1 2) |
(1) |
(1 2 3) |
(1 3 ) |
(2 3) |
(1 3 2) |
(1 3 ) |
(1 3 ) |
(1 3 2) |
(1) |
(2 3) |
(1 2) |
(1 2 3) |
(1 2 3) |
(1 2 3) |
(2 3) |
(1 2) |
(1 3 2) |
(1 3 2) |
(1 3) |
(1 3 2) |
(1 3 2) |
(1 3 ) |
(2 3) |
(1) |
(1 2 3) |
(1 2) |
(2 3) |
(2 3) |
(1 2 3) |
(1 3 2) |
(1 2) |
(1 3 ) |
(1) |
|
จากตารางจะได้ว่า G~= S3
Next
survey of all eight-element groups
|