Let G be any group of order 8. If g has an element of order 8, then G ~= Z . Let us assume now that G has no element of order 8; hence all the elements ไม่เท่ากับ e in G have order 2 or 4.
1.) If every x ไม่เท่ากับ e in has order 2, let a, b, c be three such elements. Prove that
G = {e, a, b, c, ab, bc, ac, abc } . Conclude that G ~= Z2* Z2 * Z2 .
|
Proof
ให้ f :g -----> Z2*Z2*Z2
กำหนดโดย f(e) = (0,0,0)
f(a) = (1,0,0) f(ab) = (1,1,0)
f(b) = (0,1,0) f( bc) = (0,1,1)
f(c) = (0,0,1) f(ac) =(1,0,0)
f (abc) =(1,1,1)
(G,·) |
e |
a |
b |
c |
ab |
bc |
ac |
abc |
E |
e |
a |
b |
c |
ab |
bc |
ac |
abc |
a |
a |
e |
ab |
ac |
b |
abc |
c |
bc |
b |
b |
ab |
e |
bc |
a |
c |
abc |
ac |
c |
c |
ac |
bc |
e |
abc |
b |
a |
ab |
ab |
ab |
b |
a |
abc |
e |
ac |
bc |
c |
bc |
bc |
abc |
c |
b |
ac |
e |
ab |
a |
ac |
ac |
c |
abc |
a |
bc |
ab |
e |
b |
abc |
abc |
bc |
ac |
ab |
c |
a |
b |
e |
(Z2*Z2*Z2 , +)
| (0,0,0)
| (1,0,0)
| (0,1,0)
| (0,0,1)
| (1,1,0)
| (0,1,1)
| (1,0,1)
| (1,1,1) |
(0,0,0)
| (0,0,0)
| (1,0,0)
| (0,1,0)
| (0,0,1)
| (1,1,0)
| (0,1,1)
| (1,0,1)
| (1,1,1) |
(1,0,0)
| (1,0,0)
| (0,0,0)
| (1,1,0)
| (1,0,1)
| (0,1,0)
| (1,1,1)
| (0,0,1)
| (0,1,1) |
(0,1,0)
| (0,1,0)
| (1,1,0)
| (0,0,0)
| (0,1,1)
| (1,0,0)
| (0,0,1)
| (1,1,1)
| (0,0,1) |
(0,0,1)
| (0,0,1)
| (1,0,1)
| (0,1,1)
| (0,0,0)
| (1,1,1)
| (0,1,0)
| (1,0,0)
| (1,1,0) |
(1,1,0)
| (1,1,0)
| (0,1,0)
| (1,0,0)
| (1,1,1)
| (0,0,0)
| (1,0,1)
| (0,1,1)
| (0,0,1) |
(0,1,1)
| (0,1,1)
| (1,1,1)
| (0,0,1)
| (0,1,0)
| (1,0,1)
| (0,0,0)
| (1,1,0)
| (1,0,0) |
(1,0,1)
| (1,0,1)
| (0,0,1)
| (1,1,1)
| (1,0,0)
| (0,0,1)
| (1,1,0)
| (0,0,0)
| (0,1,0) |
(1,1,1)
| (1,1,1)
| (0,1,1)
| (1,0,1)
| (1,1,0)
| (0,0,1)
| (1,0,0)
| (0,1,0)
| (0,0,0) |
จากตารางดังกล่าวจะเห็นได้ว่า G ~= Z2*Z2*Z2
In the remainder of this exercise set, assume G has an element a of order 4.
Let H = [a ]= {e, a, a2, a3}.
If b E G is not in H, then the coset Hb = {b, ab, a2b, a3b}.
By Largrange's theorem, G is the union of He = H and Hb; hence
G = {e, a, a2, a3,b, ab, a2b, a3b}
| |
|
3.) Let b be as in part2. Prove that if ba = ab , then G ~= Z4*Z2.
|
Proof
ให้ f : G--->Z4*Z2
กำหนดโดย f(e) = ( [0],[0] ) f(b) = ( [2],[1] )
f(a) = ( [1],[1] ) f(ab) = ( [3],[0] )
f(a2)= ( [2],[0] ) f(a2b) = ( [0],[1] )
f(a3) = ( [3],[1] ) (a3b) = ( [1],[0] )
(G,·) |
e |
a |
a2 |
a3 |
b |
ab |
a2b |
a3b |
e |
e |
a |
a2 |
a3 |
b |
ab |
a2b |
a3b |
a |
a |
a2 |
a3 |
e |
ab |
a2b |
a3b |
b |
a2 |
a2 |
a3 |
e |
a |
a2b |
a3b |
b |
ab |
a3 |
a3 |
e |
a |
a2 |
a3b |
b |
ab |
a2b |
b |
b |
ab |
a2b |
a3b |
e |
a |
a2 |
a3 |
ab |
ab |
a2b |
a3b |
b |
a |
a2 |
a3 |
e |
a2b |
a2b |
a3b |
b |
ab |
a2 |
a3 |
e |
a |
a3b |
a3b |
a |
ab |
a2b |
a3 |
e |
a |
a2 |
(Z4*Z2 , +) |
(0,0) |
(1,1) |
(2,0) |
(3,1) |
(2,1) |
(3,0) |
(0,1) |
(1,0) |
(0,0) |
(0,0) |
(1,1) |
(2,0) |
(3,1) |
(2,1) |
(3,0) |
(1,0) |
(1,0) |
(1,1) |
(1,1) |
(2,0) |
(3,1) |
(0,0) |
(1,1) |
(0,1) |
(1,0) |
(2,1) |
(2,0) |
(2,0) |
(3,1) |
(0,0) |
(1,1) |
(0,1) |
(1,0) |
(2,1) |
(3,0) |
(3,1) |
(3,1) |
(0,0) |
(1,1) |
(2,0) |
(1,0) |
(2,1) |
(3,0) |
(0,1) |
(2,1) |
(2,1) |
(3,0) |
(0,1) |
(1,0) |
(0,0) |
(1,1) |
(2,0) |
(3,1) |
(3,0) |
(3,0,) |
(0,1) |
(1,0) |
(2,1) |
(1,1) |
(2,0) |
(3,1) |
(0,0) |
(0,1) |
(0,1) |
(1,0) |
(2,1) |
(3,0) |
(2,0) |
(3,1) |
(0,0) |
(1,1) |
(1,0) |
(1,0) |
(2,1) |
(3,0) |
(0,1) |
(3,1) |
(0,0) |
(1,1) |
(2,0) |
จากตารางจะเห็นได้ว่า G ~= Z4*Z2
|