Let G be any group of order 10
Reason as in prceding Exercise to show that G = {e,a,b,b2,b3,b4,ab,ab2,ab3,ab4},
where a has order 2 and b has order 5
1.) Prove that ab cannot be equal to e, a, b, b2, b3or b4
|
Proof
Case 1 ถ้า ba = e
ba·a = ea
ba2 = a
be = a
b = a (ซึ่งเกิดการขัดแย้ง)
Case 2 ถ้า ba = a
ba·a = a·a
ba2 = a2
be = e
b = e (ซึ่งเกิดการขัดแย้ง)
Case 3 ถ้า ba = b
b-1 ba = b-1b
a = e (ซึ่งเกิดการขัดแย้ง)
Case 4 ถ้า ba = b2
a = b (ซึ่งเกิดการขัดแย้ง)
Case 5 ถ้า ba = b3
b-1 ba = b-1b3
a = b2 (ซึ่งเกิดการขัดแย้ง)
Case 6 ถ้า ba = b4
a = b3 (ซึ่งเกิดการขัดแย้ง)
ดังนั้น จึงสรุปได้ว่า ba ไม่เท่ากับ e, a, b, b2, b3or b4
| |
|
2.) Prove that if ba = ab, then G =/ Z10
|
Proof
ให้ f : G -------> Z10
กำหนดโดย f(e) = [0] f(b4) = [8]
f(a) = [5] f(ab) = [7]
f(b) = [2] f(ab2) = [9]
f(b2) = [4] f(ab3) = [1]
f(b3) = [6] f(ab4) = [3]
สามารถเขียนตารางเปรียบเทียบได้ ดังนี้
(G,·) |
e |
a |
b |
b2 |
b3 |
b4 |
ab |
ab2 |
ab3 |
ab4 |
e |
e |
a |
b |
b2 |
b3 |
b4 |
ab |
ab2 |
ab3 |
ab4 |
a |
a |
e |
Ab |
ab2 |
ab3 |
ab4 |
b |
b2 |
b3 |
b4 |
b |
b |
ab |
b2 |
b3 |
b4 |
e |
ab2 |
ab3 |
ab4 |
a |
b2 |
b2 |
ab2 |
b3 |
b4 |
e |
b |
ab3 |
ab4 |
a |
ab |
b3 |
b3 |
ab3 |
b4 |
e |
b |
b2 |
ab4 |
a |
ab |
ab2 |
b4 |
b4 |
ab4 |
e |
b |
b2 |
b3 |
a |
ab |
ab2 |
ab3 |
ab |
ab |
b |
Ab2 |
ab3 |
ab4 |
a |
b2 |
b3 |
b4 |
e |
ab2 |
ab2 |
b2 |
Ab3 |
ab4 |
a |
ab |
b3 |
b4 |
e |
b |
ab3 |
ab3 |
b3 |
Ab4 |
a |
ab |
ab2 |
b4 |
e |
b |
b2 |
ab4 |
ab4 |
b4 |
a |
ab |
ab2 |
ab3 |
e |
b |
b2 |
b3 |
|
(Z,·,+)
| [0] |
[5] |
[2] |
[4] |
[6] |
[8] |
[7] |
[9] |
[1] |
[3] |
[0] |
[0] |
[5] |
[2] |
[4] |
[6] |
[8] |
[7] |
[9] |
[1] |
[3] |
[5] |
[5] |
[0] |
[7] |
[9] |
[1] |
[3] |
[2] |
[4] |
[6] |
[8] |
[2] |
[2] |
[7] |
[4] |
[6] |
[8] |
[0] |
[9] |
[1] |
[3] |
[5] |
[4] |
[4] |
[9] |
[6] |
[8] |
[0] |
[2] |
[1] |
[3] |
[5] |
[7] |
[6] |
[6] |
[1] |
[8] |
[0] |
[2] |
[4] |
[3] |
[5] |
[7] |
[9] |
[8] |
[8] |
[3] |
[0] |
[2] |
[4] |
[6] |
[5] |
[7] |
[9] |
[1] |
[7] |
[7] |
[2] |
[9] |
[1] |
[3] |
[5] |
[4] |
[6] |
[8] |
[0] |
[9] |
[9] |
[4] |
[1] |
[3] |
[5] |
[7] |
[6] |
[8] |
[0] |
[2] |
[1] |
[1] |
[6] |
[3] |
[5] |
[7] |
[9] |
[8] |
[0] |
[2] |
[4] |
[3] |
[3] |
[8] |
[5] |
[7] |
[9] |
[1] |
[0] |
[2] |
[4] |
[6] |
|
จากตารางจะเห็นได้ว่า G=/ Z10
|
|
3.) If ba = ab2 , Prove that ba2= a2b4 and conclude that b =b4
This is impossible because b has order 5 , hence ba =/ ab2
|
Proof
ให้ ba = ab2
ต้องพิสูจน์ให้ได้ว่า ba2 =/ a2b4
จาก ba2 = (ba)a
= (ab2)a
= ab(ba)
= a(ba) b2
= aab2b2
= a 2b
ดังนั้น ba2 = a2b4
เนื่องจาก a = 2 จะได้ว่า
ba2 = a2b4
be = eb4
b = b4
|
|
4.) If ba = ab3 , Prove that ba2 = a2 b9 = a2 b4 and conclude that b =b4
|
This is impossible (Why?), hence ba ไม่เท่ากับ ab2
Proof
ให้ ba = ab3
ต้องพิสูจน์ให้ได้ว่า ba2 = a2b9 = a2b4
จาก ba2 = (ba)a
= (ab3)a
= ab2(ba)
= ab 2ab3
= ab(ba)b3
= ab(ab3)b3
= a(ba)b3b3
= aa b3b3b3
= a2b9
ดังนั้น ba2 = a2b4
เนื่องจาก b = 5 จะได้ว่า
ba2 = a2b4b5
ba2 = a2b9 = a2b4
|
|
5.) Prove that if ba=ab4 then G ~= D5 ( where is the group symmetrics of the pentagon)
|
Proof
ให้ f : G ------> D5
กำหนดโดย f(e)=
1 |
2 |
3 |
4 |
5 |
1 |
2 |
3 |
4 |
5 |
กำหนดโดย f(a)=
1 |
2 |
3 |
4 |
5 |
2 |
1 |
5 |
4 |
3 |
กำหนดโดย f(b)=
1 |
2 |
3 |
4 |
5 |
2 |
3 |
4 |
5 |
1 |
กำหนดโดย f(b2)=
1 |
2 |
3 |
4 |
5 |
3 |
4 |
5 |
1 |
2 |
กำหนดโดย f(b3)=
1 |
2 |
3 |
4 |
5 |
4 |
5 |
1 |
2 |
3 |
กำหนดโดย f(b4)=
1 |
2 |
3 |
4 |
5 |
4 |
5 |
1 |
2 |
3 |
กำหนดโดย f(ab)=
1 |
2 |
3 |
4 |
5 |
3 |
2 |
1 |
5 |
4 |
กำหนดโดย f(ab2)=
1 |
2 |
3 |
4 |
5 |
4 |
3 |
2 |
1 |
5 |
กำหนดโดย f(ab3)=
1 |
2 |
3 |
4 |
5 |
5 |
4 |
3 |
2 |
1 |
กำหนดโดย f(ab4)=
1 |
2 |
3 |
4 |
5 |
1 |
5 |
4 |
3 |
2 |
(G, *) |
e |
A |
b |
b2 |
b3 |
b4 |
ab |
ab2 |
ab3 |
ab4 |
e |
e |
A |
b |
b2 |
b3 |
b4 |
ab |
ab2 |
ab3 |
ab4 |
a |
a |
E |
ab |
ab2 |
ab3 |
ab4 |
b |
b2 |
b3 |
b4 |
b |
b |
Ab4 |
b2 |
b3 |
b4 |
e |
a |
ab |
ab2 |
ab3 |
b2 |
b2 |
Ab3 |
b3 |
b4 |
e |
b |
ab4 |
a |
ab |
ab2 |
b3 |
b3 |
Ab2 |
b4 |
e |
b |
b2 |
ab3 |
ab4 |
a |
ab |
b4 |
b4 |
ab |
e |
b |
b2 |
b3 |
ab2 |
ab3 |
ab4 |
a |
ab |
ab |
b4 |
ab2 |
ab3 |
ab4 |
a |
e |
b |
b2 |
b3 |
ab2 |
ab2 |
b3 |
ab3 |
ab4 |
a |
ab |
b4 |
e |
b |
b2 |
ab33 |
ab3 |
b3 |
ab4 |
a |
ab |
ab2 |
b3 |
b4 |
e |
b |
ab4 |
ab4 |
b |
a |
ab |
ab2 |
ab3 |
b2 |
b3 |
b4 |
e |
Home
Next
|
|