surver of all ten-element groups



           Let G be any group of order 10 Reason as in prceding Exercise to show that G = {e,a,b,b2,b3,b4,ab,ab2,ab3,ab4}, where a has order 2 and b has order 5

1.) Prove that ab cannot be equal to e, a, b, b2, b3or b4
Proof


Case 1  ถ้า      ba = e
		        ba·a = ea
		          ba2 = a
		           be = a
 			 b = a	(ซึ่งเกิดการขัดแย้ง)
	Case 2  ถ้า      ba = a
		        ba·a = a·a
		          ba2 = a2
		           be = e
 			 b = e	(ซึ่งเกิดการขัดแย้ง)
	Case 3  ถ้า       ba = b
		        b-1 ba = b-1b
		              a = e (ซึ่งเกิดการขัดแย้ง)
	Case 4  ถ้า       ba = b2
		       	  a = b (ซึ่งเกิดการขัดแย้ง)
	Case 5  ถ้า       ba = b3
		        b-1 ba = b-1b3
		              a = b2 (ซึ่งเกิดการขัดแย้ง)
	Case 6  ถ้า       ba = b4

a = b3 (ซึ่งเกิดการขัดแย้ง) ดังนั้น จึงสรุปได้ว่า ba ไม่เท่ากับ e, a, b, b2, b3or b4
2.) Prove that if ba = ab, then G =/ Z10
Proof

ให้ f : G -------> Z10
กำหนดโดย            	f(e) = [0]                                              	f(b4) = [8]
		f(a) = [5]			f(ab) = [7]
		f(b) = [2]			f(ab2) = [9]
	 	f(b2) = [4]			f(ab3) = [1]
		f(b3) = [6]			f(ab4) = [3]

สามารถเขียนตารางเปรียบเทียบได้ ดังนี้
(G,·) e a b b2 b3 b4 ab ab2 ab3 ab4
e e a b b2 b3 b4 ab ab2 ab3 ab4
a a e Ab ab2 ab3 ab4 b b2 b3 b4
b b ab b2 b3 b4 e ab2 ab3 ab4 a
b2 b2 ab2 b3 b4 e b ab3 ab4 a ab
b3 b3 ab3 b4 e b b2 ab4 a ab ab2
b4 b4 ab4 e b b2 b3 a ab ab2 ab3
ab ab b Ab2 ab3 ab4 a b2 b3 b4 e
ab2 ab2 b2 Ab3 ab4 a ab b3 b4 e b
ab3 ab3 b3 Ab4 a ab ab2 b4 e b b2
ab4 ab4 b4 a ab ab2 ab3 e b b2 b3
(Z,·,+) [0] [5] [2] [4] [6] [8] [7] [9] [1] [3]
[0] [0] [5] [2] [4] [6] [8] [7] [9] [1] [3]
[5] [5] [0] [7] [9] [1] [3] [2] [4] [6] [8]
[2] [2] [7] [4] [6] [8] [0] [9] [1] [3] [5]
[4] [4] [9] [6] [8] [0] [2] [1] [3] [5] [7]
[6] [6] [1] [8] [0] [2] [4] [3] [5] [7] [9]
[8] [8] [3] [0] [2] [4] [6] [5] [7] [9] [1]
[7] [7] [2] [9] [1] [3] [5] [4] [6] [8] [0]
[9] [9] [4] [1] [3] [5] [7] [6] [8] [0] [2]
[1] [1] [6] [3] [5] [7] [9] [8] [0] [2] [4]
[3] [3] [8] [5] [7] [9] [1] [0] [2] [4] [6]


จากตารางจะเห็นได้ว่า G=/ Z10
3.) If ba = ab2 , Prove that ba2= a2b4 and conclude that b =b4 
 This is impossible because b has order 5 , hence  ba  =/ ab2

Proof
       ให้	ba = ab2
       ต้องพิสูจน์ให้ได้ว่า 	ba2 =/  a2b4
        	    จาก   ba2 = (ba)a
                                         = (ab2)a
                                         = ab(ba)
                                         = a(ba) b2
                                         = aab2b2
                                         = a 2b
                      ดังนั้น   ba2 = a2b4
                      เนื่องจาก  a = 2   จะได้ว่า
                                ba2 = a2b4 
                                   be = eb4
                                     b = b4

4.) If ba = ab3 , Prove that ba2 = a2 b9 = a2 b4 and conclude that b =b4
This is impossible (Why?), hence ba ไม่เท่ากับ ab2
Proof

	ให้   ba = ab3
	 ต้องพิสูจน์ให้ได้ว่า  ba2 = a2b9 = a2b4
                                           จาก   ba2 = (ba)a
                                                            = (ab3)a
                                                            = ab2(ba)
                                                            = ab 2ab3
                                                            = ab(ba)b3
                                                            = ab(ab3)b3
                                                            = a(ba)b3b3
                                                            = aa b3b3b3
                                                            = a2b9
                                        ดังนั้น  ba2 = a2b4
                                       เนื่องจาก   b  = 5  จะได้ว่า
                                                   ba2 = a2b4b5
                                           ba2 = a2b9 = a2b4 


5.) Prove that if ba=ab4 then G ~= D5 ( where is the group symmetrics of the pentagon)
Proof

                                                               ให้  f : G ------> D5
กำหนดโดย f(e)=
1 2 3 4 5
1 2 3 4 5
กำหนดโดย f(a)=
1 2 3 4 5
2 1 5 4 3
กำหนดโดย f(b)=
1 2 3 4 5
2 3 4 5 1
กำหนดโดย f(b2)=
1 2 3 4 5
3 4 5 1 2
กำหนดโดย f(b3)=
1 2 3 4 5
4 5 1 2 3
กำหนดโดย f(b4)=
1 2 3 4 5
4 5 1 2 3
กำหนดโดย f(ab)=
1 2 3 4 5
3 2 1 5 4
กำหนดโดย f(ab2)=
1 2 3 4 5
4 3 2 1 5
กำหนดโดย f(ab3)=
1 2 3 4 5
5 4 3 2 1
กำหนดโดย f(ab4)=
1 2 3 4 5
1 5 4 3 2


D5



(G, *) e A b b2 b3 b4 ab ab2 ab3 ab4
e e A b b2 b3 b4 ab ab2 ab3 ab4
a a E ab ab2 ab3 ab4 b b2 b3 b4
b b Ab4 b2 b3 b4 e a ab ab2 ab3
b2 b2 Ab3 b3 b4 e b ab4 a ab ab2
b3 b3 Ab2 b4 e b b2 ab3 ab4 a ab
b4 b4 ab e b b2 b3 ab2 ab3 ab4 a
ab ab b4 ab2 ab3 ab4 a e b b2 b3
ab2 ab2 b3 ab3 ab4 a ab b4 e b b2
ab33 ab3 b3 ab4 a ab ab2 b3 b4 e b
ab4 ab4 b a ab ab2 ab3 b2 b3 b4 e

Home
Next